A circular object with a mass of 1.29 kg is rotating on the outer rim of a circular platter. It is rotating at a speed of [tex]$0.0213 \, m/s$[/tex], with a radius of 14.2 cm.

What is the centripetal force exerted on the object situated on the outside of the platter?

Remember to convert the units.



Answer :

To determine the centripetal force exerted on the object situated on the outside of the platter, we need to follow a series of steps carefully incorporating unit conversions where necessary:

1. Given Values:

- Mass ([tex]\(m\)[/tex]) of the object: [tex]\(1.29 \text{ kg}\)[/tex]
- Speed ([tex]\(v\)[/tex]): [tex]\(0.0213 \text{ m/s}\)[/tex]
- Radius ([tex]\(r\)[/tex]): [tex]\(14.2 \text{ cm}\)[/tex]

2. Convert Radius to Meters:

The radius is given in centimeters, so we need to convert it to meters. There are 100 centimeters in a meter, thus:

[tex]\[ r = \frac{14.2 \text{ cm}}{100} = 0.142 \text{ m} \][/tex]

3. Centripetal Force Formula:

The formula for centripetal force ([tex]\(F_c\)[/tex]) is:

[tex]\[ F_c = \frac{mv^2}{r} \][/tex]

where:
- [tex]\(m\)[/tex] is the mass
- [tex]\(v\)[/tex] is the speed
- [tex]\(r\)[/tex] is the radius

4. Substitute the Given Values:

[tex]\[ F_c = \frac{1.29 \times (0.0213)^2}{0.142} \][/tex]

5. Calculate the Numerator ([tex]\(mv^2\)[/tex]):

[tex]\[ mv^2 = 1.29 \times (0.0213)^2 \approx 1.29 \times 0.00045369 = 0.00058526 \text{ kg m}^2\text{/s}^2 \][/tex]

6. Calculate the Centripetal Force:

[tex]\[ F_c = \frac{0.00058526}{0.142} \approx 0.004120 \text{ N} \][/tex]

7. Express the Result in Scientific Notation:

To express [tex]\(0.004120 \text{ N}\)[/tex] in scientific notation, we rewrite it as follows:

[tex]\[ 0.004120 \text{ N} = 4.12 \times 10^{-3} \text{ N} \][/tex]

Thus, the centripetal force exerted on the object situated on the outside of the platter is:

[tex]\[ 4.12 \times 10^{-3} \text{ N} \][/tex]

So, the answer is:
[tex]\[ 4.12 \times 10^{-3} \text{ N} \][/tex]