Drag each tile to the correct box. Not all tiles will be used.

Consider the following function:
[tex]\[ f(x) = 4x + 7 \][/tex]

Place the steps for finding [tex]\( f^{-1}(x) \)[/tex] in the correct order:

1. [tex]\( y = 4x + 7 \)[/tex]
2. [tex]\( x = 4y + 7 \)[/tex]
3. [tex]\( x - 7 = 4y \)[/tex]
4. [tex]\( \frac{x - 7}{4} = y \)[/tex]
5. [tex]\( f^{-1}(x) = \frac{x - 7}{4} \)[/tex]

[tex]\[
\begin{array}{c}
\square \\
\square \\
\square \\
\square \\
\square
\end{array}
\][/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = 4x + 7 \)[/tex], let's go through the steps methodically.

1. Start with the given function and replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = 4x + 7 \][/tex]

2. Swap the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to solve for [tex]\( y \)[/tex]:
[tex]\[ x = 4y + 7 \][/tex]

3. Isolate [tex]\( y \)[/tex] on one side of the equation:
[tex]\[ x - 7 = 4y \][/tex]

4. Solve for [tex]\( y \)[/tex] by dividing both sides by 4:
[tex]\[ y = \frac{x - 7}{4} \][/tex]

5. The inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{x - 7}{4} \][/tex]

Following these steps, the correct order of steps can be matched with the given tiles:

- [tex]\( x = 4y + 7 \)[/tex]
- [tex]\( x - 7 = 4y \)[/tex]
- [tex]\( \frac{x - 7}{4} = y \)[/tex]
- [tex]\( f^{-1}(x) = \frac{x-7}{4} \)[/tex]

Thus, the sequence is:

[tex]\[ x=4y+7 \rightarrow x-7=4y \rightarrow \frac{x-7}{4}=y \rightarrow f^{-1}(x)=\frac{x-7}{4} \][/tex]