Find the residual values, and use the graphing calculator tool to make a residual plot.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & -3.5 & -1.1 & \\
\hline
2 & -2.9 & 2 & \\
\hline
3 & -1.1 & 5.1 & \\
\hline
4 & 2.2 & 8.2 & \\
\hline
5 & 3.4 & 11.3 & \\
\hline
\end{tabular}

Does the residual plot show that the line of best fit is appropriate for the data?

A. Yes, the points have no pattern.
B. No, the points are evenly distributed about the [tex]$x$[/tex]-axis.
C. No, the points are in a linear pattern.
D. Yes, the points are in a curved pattern.



Answer :

To find the residual values, we will follow these steps:

1. Subtraction for Residuals: For each [tex]\( x \)[/tex]-value, subtract the Predicted Value from the Given Value to find the residual:
[tex]\[ \text{Residual} = \text{Given} - \text{Predicted}. \][/tex]

Let's perform these calculations:

- For [tex]\( x = 1 \)[/tex]:
[tex]\[ \text{Residual} = -3.5 - (-1.1) = -3.5 + 1.1 = -2.4. \][/tex]

- For [tex]\( x = 2 \)[/tex]:
[tex]\[ \text{Residual} = -2.9 - 2 = -4.9. \][/tex]

- For [tex]\( x = 3 \)[/tex]:
[tex]\[ \text{Residual} = -1.1 - 5.1 = -6.2. \][/tex]

- For [tex]\( x = 4 \)[/tex]:
[tex]\[ \text{Residual} = 2.2 - 8.2 = -6.0. \][/tex]

- For [tex]\( x = 5 \)[/tex]:
[tex]\[ \text{Residual} = 3.4 - 11.3 = -7.9. \][/tex]

2. Completing the Table:
Fill in the residual values in the table:
\begin{tabular}{|c|c|c|c|}
\hline [tex]$x$[/tex] & Given & Predicted & Residual \\
\hline 1 & -3.5 & -1.1 & -2.4 \\
\hline 2 & -2.9 & 2 & -4.9 \\
\hline 3 & -1.1 & 5.1 & -6.2 \\
\hline 4 & 2.2 & 8.2 & -6.0 \\
\hline 5 & 3.4 & 11.3 & -7.9 \\
\hline
\end{tabular}

3. Analyzing the Residual Plot Data:
To determine if the line of best fit is appropriate for the data, graph the residuals on a residual plot where the [tex]\( x \)[/tex]-axis represents the original [tex]\( x \)[/tex]-values, and the [tex]\( y \)[/tex]-axis represents the residuals.

Observing the residual values:
[tex]\[ (-2.4, -4.9, -6.2, -6.0, -7.9) \][/tex]
indicates a pattern in the residuals. The residuals are not randomly scattered; instead, they show a trend or pattern.

4. Conclusion:
Therefore, the residual plot shows that the line of best fit is not appropriate for the data because the points are not randomly scattered around the x-axis but are in a linear pattern.

Thus, the correct answer is:
No, the points are in a linear pattern.