Karissa begins to solve the equation [tex]\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)[/tex]. Her work is correct and is shown below.

[tex]\[
\begin{array}{c}
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4) \\
\frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4 \\
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\end{array}
\][/tex]

When she subtracts 4 from both sides, [tex]\frac{1}{2}x = -\frac{1}{2}x[/tex] results. What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]
B. [tex]\frac{1}{2}[/tex]
C. 0
D. [tex]\frac{1}{2}[/tex]



Answer :

Let's solve the equation step-by-step as Karissa did to find the value of [tex]\( x \)[/tex].

Given equation:
[tex]\[ \frac{1}{2}(x - 14) + 11 = \frac{1}{2} x - (x - 4) \][/tex]

First, we distribute [tex]\(\frac{1}{2}\)[/tex] on the left side:
[tex]\[ \frac{1}{2}x - \frac{1}{2}(14) + 11 = \frac{1}{2}x - x + 4 \][/tex]

Simplify the left side:
[tex]\[ \frac{1}{2}x - 7 + 11 = \frac{1}{2}x - x + 4 \][/tex]

Combine like terms on the left side:
[tex]\[ \frac{1}{2}x + 4 = \frac{1}{2}x - x + 4 \][/tex]

Notice that both sides of the equation have a [tex]\(4\)[/tex]. Subtract 4 from both sides:
[tex]\[ \frac{1}{2}x = -\frac{1}{2}x \][/tex]

To solve [tex]\(\frac{1}{2}x = -\frac{1}{2}\)[/tex], we add [tex]\(\frac{1}{2}x\)[/tex] to both sides:
[tex]\[ \frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2} + \frac{1}{2}x \][/tex]

Combine like terms:
[tex]\[ x = -1 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( -1 \)[/tex].