Answer :
Let's complete the table by filling in the values step by step.
### Step 1: Calculate Value Per Share (Column C)
The value per share is determined by dividing the total market value by the total shares issued.
- For \[tex]$47 million and 2 million shares: \$[/tex]47 / 2 = \[tex]$23.5 per share - For \$[/tex]25 million and 4 million shares: \[tex]$25 / 4 = \$[/tex]6.25 per share
- For \[tex]$31 million and 3 million shares: \$[/tex]31 / 3 ≈ \[tex]$10.33 per share - For \$[/tex]12 million and 12 million shares: \[tex]$12 / 12 = \$[/tex]1 per share
- For \[tex]$90 million and 18 million shares: \$[/tex]90 / 18 = \[tex]$5 per share - For \$[/tex]26 million and 3 million shares: \[tex]$26 / 3 ≈ \$[/tex]8.67 per share
- For \[tex]$84 million and 22 million shares: \$[/tex]84 / 22 ≈ \[tex]$3.82 per share ### Step 2: Charges (Column E) Given: - Charge for the first three investments: \$[/tex]250
- Charge for the next three investments: \[tex]$300 - No charge for the last investment ### Step 3: D minus E (Column F) Subtract the charge from the amount invested (\$[/tex]4000):
- \[tex]$4000 - \$[/tex]250 = \[tex]$3750 - \$[/tex]3750 for the first three investments
- \[tex]$4000 - \$[/tex]300 = \[tex]$3700 - \$[/tex]3700 for the next three investments
- \[tex]$4000 for the last investment (no charge) ### Step 4: Shares Purchased (Column G) Calculate the number of shares purchased by dividing D minus E by the value per share. Round to the nearest tenth: - For \$[/tex]23.5 per share: \[tex]$3750 / 23.5 ≈ 159.6 shares - For \$[/tex]6.25 per share: \[tex]$3750 / 6.25 = 600 shares - For \$[/tex]10.33 per share: \[tex]$3750 / 10.33 ≈ 362.9 shares - For \$[/tex]1 per share: \[tex]$3700 / 1 = 3700 shares - For \$[/tex]5 per share: \[tex]$3700 / 5 = 740 shares - For \$[/tex]8.67 per share: \[tex]$3700 / 8.67 ≈ 426.9 shares - For \$[/tex]3.82 per share: \[tex]$4000 / 3.82 ≈ 1047.6 shares Finally, we can fill in the table as follows: \[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Total Market Value} & \text{Total Shares Issued} & \text{Value Per Share} & \text{Amount Invested} & \text{Charge} & \text{D minus E} & \text{Shares Purchased} \\ \hline \$[/tex]47 & 2 & \[tex]$23.5 & \$[/tex]4000 & \[tex]$250 & \$[/tex]3750 & 159.6 \\
\hline
\[tex]$25 & 4 & \$[/tex]6.25 & \[tex]$4000 & \$[/tex]250 & \[tex]$3750 & 600.0 \\ \hline \$[/tex]31 & 3 & \[tex]$10.33 & \$[/tex]4000 & \[tex]$250 & \$[/tex]3750 & 362.9 \\
\hline
\[tex]$12 & 12 & \$[/tex]1.0 & \[tex]$4000 & \$[/tex]300 & \[tex]$3700 & 3700.0 \\ \hline \$[/tex]90 & 18 & \[tex]$5.0 & \$[/tex]4000 & \[tex]$300 & \$[/tex]3700 & 740.0 \\
\hline
\[tex]$26 & 3 & \$[/tex]8.67 & \[tex]$4000 & \$[/tex]300 & \[tex]$3700 & 426.9 \\ \hline \$[/tex]84 & 22 & \[tex]$3.82 & \$[/tex]4000 & 0 & \$4000 & 1047.6 \\
\hline
\end{array}
\]
This completes the table with the correct values for each column.
### Step 1: Calculate Value Per Share (Column C)
The value per share is determined by dividing the total market value by the total shares issued.
- For \[tex]$47 million and 2 million shares: \$[/tex]47 / 2 = \[tex]$23.5 per share - For \$[/tex]25 million and 4 million shares: \[tex]$25 / 4 = \$[/tex]6.25 per share
- For \[tex]$31 million and 3 million shares: \$[/tex]31 / 3 ≈ \[tex]$10.33 per share - For \$[/tex]12 million and 12 million shares: \[tex]$12 / 12 = \$[/tex]1 per share
- For \[tex]$90 million and 18 million shares: \$[/tex]90 / 18 = \[tex]$5 per share - For \$[/tex]26 million and 3 million shares: \[tex]$26 / 3 ≈ \$[/tex]8.67 per share
- For \[tex]$84 million and 22 million shares: \$[/tex]84 / 22 ≈ \[tex]$3.82 per share ### Step 2: Charges (Column E) Given: - Charge for the first three investments: \$[/tex]250
- Charge for the next three investments: \[tex]$300 - No charge for the last investment ### Step 3: D minus E (Column F) Subtract the charge from the amount invested (\$[/tex]4000):
- \[tex]$4000 - \$[/tex]250 = \[tex]$3750 - \$[/tex]3750 for the first three investments
- \[tex]$4000 - \$[/tex]300 = \[tex]$3700 - \$[/tex]3700 for the next three investments
- \[tex]$4000 for the last investment (no charge) ### Step 4: Shares Purchased (Column G) Calculate the number of shares purchased by dividing D minus E by the value per share. Round to the nearest tenth: - For \$[/tex]23.5 per share: \[tex]$3750 / 23.5 ≈ 159.6 shares - For \$[/tex]6.25 per share: \[tex]$3750 / 6.25 = 600 shares - For \$[/tex]10.33 per share: \[tex]$3750 / 10.33 ≈ 362.9 shares - For \$[/tex]1 per share: \[tex]$3700 / 1 = 3700 shares - For \$[/tex]5 per share: \[tex]$3700 / 5 = 740 shares - For \$[/tex]8.67 per share: \[tex]$3700 / 8.67 ≈ 426.9 shares - For \$[/tex]3.82 per share: \[tex]$4000 / 3.82 ≈ 1047.6 shares Finally, we can fill in the table as follows: \[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Total Market Value} & \text{Total Shares Issued} & \text{Value Per Share} & \text{Amount Invested} & \text{Charge} & \text{D minus E} & \text{Shares Purchased} \\ \hline \$[/tex]47 & 2 & \[tex]$23.5 & \$[/tex]4000 & \[tex]$250 & \$[/tex]3750 & 159.6 \\
\hline
\[tex]$25 & 4 & \$[/tex]6.25 & \[tex]$4000 & \$[/tex]250 & \[tex]$3750 & 600.0 \\ \hline \$[/tex]31 & 3 & \[tex]$10.33 & \$[/tex]4000 & \[tex]$250 & \$[/tex]3750 & 362.9 \\
\hline
\[tex]$12 & 12 & \$[/tex]1.0 & \[tex]$4000 & \$[/tex]300 & \[tex]$3700 & 3700.0 \\ \hline \$[/tex]90 & 18 & \[tex]$5.0 & \$[/tex]4000 & \[tex]$300 & \$[/tex]3700 & 740.0 \\
\hline
\[tex]$26 & 3 & \$[/tex]8.67 & \[tex]$4000 & \$[/tex]300 & \[tex]$3700 & 426.9 \\ \hline \$[/tex]84 & 22 & \[tex]$3.82 & \$[/tex]4000 & 0 & \$4000 & 1047.6 \\
\hline
\end{array}
\]
This completes the table with the correct values for each column.