Complete the table below.

John Honest created the following table to determine the asset value per share and the number of shares purchased (to the nearest tenth) given different loading charges for a \[tex]$4,000 investment. Some answers will be used more than once.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
A (In millions) & B (In millions) & & C & D & $[/tex]E[tex]$ & F & G \\
\hline
Total Market Value & Total Shares Issued & Value & Per Share & Amount Invested & Charge & D minus E & Shares Purchased \\
\hline
\$[/tex]47 & 2 & \[tex]$ & $[/tex]v[tex]$ & \$[/tex]4,000 & \[tex]$250 & $[/tex]\sim[tex]$ & $[/tex]\sim[tex]$ \\
\hline
\$[/tex]25 & 4 & \[tex]$ & $[/tex]\sim[tex]$ & \$[/tex]4,000 & \[tex]$250 & \$[/tex] & [tex]$\sim$[/tex] \\
\hline
\[tex]$31 & 3 & \$[/tex] & [tex]$\checkmark$[/tex] & \[tex]$4,000 & \$[/tex]250 & [tex]$\sim$[/tex] & [tex]$\sim$[/tex] \\
\hline
\[tex]$12 & 12 & \$[/tex] & [tex]$\sim$[/tex] & \[tex]$4,000 & \$[/tex]300 & [tex]$\checkmark$[/tex] & [tex]$\sim$[/tex] \\
\hline
\[tex]$90 & 18 & \$[/tex] & [tex]$\sim$[/tex] & \[tex]$4,000 & \$[/tex]300 & \[tex]$ & $[/tex]\sim[tex]$ \\
\hline
\$[/tex]26 & 3 & \[tex]$ & $[/tex]\checkmark[tex]$ & \$[/tex]4,000 & \[tex]$300 & \$[/tex] & [tex]$\sim$[/tex] \\
\hline
\[tex]$84 & 22 & \$[/tex] & [tex]$v$[/tex] & \[tex]$4,000 & none & \$[/tex] & [tex]$\sim$[/tex] \\
\hline
... & I & l & [tex]$\sim$[/tex] & ... & & [tex]$\therefore$[/tex] & [tex]$\sim$[/tex] \\
\hline
\end{tabular}



Answer :

Let's complete the table by filling in the values step by step.

### Step 1: Calculate Value Per Share (Column C)
The value per share is determined by dividing the total market value by the total shares issued.

- For \[tex]$47 million and 2 million shares: \$[/tex]47 / 2 = \[tex]$23.5 per share - For \$[/tex]25 million and 4 million shares: \[tex]$25 / 4 = \$[/tex]6.25 per share
- For \[tex]$31 million and 3 million shares: \$[/tex]31 / 3 ≈ \[tex]$10.33 per share - For \$[/tex]12 million and 12 million shares: \[tex]$12 / 12 = \$[/tex]1 per share
- For \[tex]$90 million and 18 million shares: \$[/tex]90 / 18 = \[tex]$5 per share - For \$[/tex]26 million and 3 million shares: \[tex]$26 / 3 ≈ \$[/tex]8.67 per share
- For \[tex]$84 million and 22 million shares: \$[/tex]84 / 22 ≈ \[tex]$3.82 per share ### Step 2: Charges (Column E) Given: - Charge for the first three investments: \$[/tex]250
- Charge for the next three investments: \[tex]$300 - No charge for the last investment ### Step 3: D minus E (Column F) Subtract the charge from the amount invested (\$[/tex]4000):

- \[tex]$4000 - \$[/tex]250 = \[tex]$3750 - \$[/tex]3750 for the first three investments
- \[tex]$4000 - \$[/tex]300 = \[tex]$3700 - \$[/tex]3700 for the next three investments
- \[tex]$4000 for the last investment (no charge) ### Step 4: Shares Purchased (Column G) Calculate the number of shares purchased by dividing D minus E by the value per share. Round to the nearest tenth: - For \$[/tex]23.5 per share: \[tex]$3750 / 23.5 ≈ 159.6 shares - For \$[/tex]6.25 per share: \[tex]$3750 / 6.25 = 600 shares - For \$[/tex]10.33 per share: \[tex]$3750 / 10.33 ≈ 362.9 shares - For \$[/tex]1 per share: \[tex]$3700 / 1 = 3700 shares - For \$[/tex]5 per share: \[tex]$3700 / 5 = 740 shares - For \$[/tex]8.67 per share: \[tex]$3700 / 8.67 ≈ 426.9 shares - For \$[/tex]3.82 per share: \[tex]$4000 / 3.82 ≈ 1047.6 shares Finally, we can fill in the table as follows: \[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Total Market Value} & \text{Total Shares Issued} & \text{Value Per Share} & \text{Amount Invested} & \text{Charge} & \text{D minus E} & \text{Shares Purchased} \\ \hline \$[/tex]47 & 2 & \[tex]$23.5 & \$[/tex]4000 & \[tex]$250 & \$[/tex]3750 & 159.6 \\
\hline
\[tex]$25 & 4 & \$[/tex]6.25 & \[tex]$4000 & \$[/tex]250 & \[tex]$3750 & 600.0 \\ \hline \$[/tex]31 & 3 & \[tex]$10.33 & \$[/tex]4000 & \[tex]$250 & \$[/tex]3750 & 362.9 \\
\hline
\[tex]$12 & 12 & \$[/tex]1.0 & \[tex]$4000 & \$[/tex]300 & \[tex]$3700 & 3700.0 \\ \hline \$[/tex]90 & 18 & \[tex]$5.0 & \$[/tex]4000 & \[tex]$300 & \$[/tex]3700 & 740.0 \\
\hline
\[tex]$26 & 3 & \$[/tex]8.67 & \[tex]$4000 & \$[/tex]300 & \[tex]$3700 & 426.9 \\ \hline \$[/tex]84 & 22 & \[tex]$3.82 & \$[/tex]4000 & 0 & \$4000 & 1047.6 \\
\hline
\end{array}
\]

This completes the table with the correct values for each column.