Answer :
To find the logarithmic regression model of the form [tex]\( y = a + b \ln(x) \)[/tex] for the given data set, we can follow these steps:
1. Define the Data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 9 & 5 \\ 12 & 17 \\ 22 & 45 \\ 40 & 60 \\ \hline \end{array} \][/tex]
2. Apply Logarithmic Transformation:
Define [tex]\( u = \ln(x) \)[/tex] where [tex]\( \ln \)[/tex] denotes the natural logarithm. Compute [tex]\( u \)[/tex] for each value of [tex]\( x \)[/tex].
[tex]\[ \begin{array}{|c|c|c|} \hline x & \ln(x) & y \\ \hline 9 & \ln(9) & 5 \\ 12 & \ln(12) & 17 \\ 22 & \ln(22) & 45 \\ 40 & \ln(40) & 60 \\ \hline \end{array} \][/tex]
Which gives us approximately:
[tex]\[ \begin{array}{|c|c|c|} \hline x & \ln(x) & y \\ \hline 9 & 2.1972 & 5 \\ 12 & 2.4849 & 17 \\ 22 & 3.0910 & 45 \\ 40 & 3.6889 & 60 \\ \hline \end{array} \][/tex]
3. Perform Linear Regression on the Transformed Data:
We now perform a linear regression on the data points [tex]\((\ln(x), y)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \ln(x) & y \\ \hline 2.1972 & 5 \\ 2.4849 & 17 \\ 3.0910 & 45 \\ 3.6889 & 60 \\ \hline \end{array} \][/tex]
We fit a line [tex]\(y = a + b \cdot \ln(x)\)[/tex] to this transformed data.
4. Find the Coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
Using the least squares method (or another suitable method for linear regression), we solve for the coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that best fit the transformed data.
From the calculations and fitting, we obtain the coefficients:
[tex]\[ a = -76.20384525969956 \][/tex]
[tex]\[ b = 37.67347576983646 \][/tex]
5. Construct the Model:
Using the coefficients found, the logarithmic regression model is:
[tex]\[ y = -76.20384525969956 + 37.67347576983646 \ln(x) \][/tex]
So, the regression equation modeling the height of the stalk of corn as a function of the days is:
[tex]\[ y = -76.20384525969956 + 37.67347576983646 \ln(x) \][/tex]
Thus, we have:
[tex]\[ \begin{array}{l} a = -76.20384525969956 \\ b = 37.67347576983646 \end{array} \][/tex]
1. Define the Data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 9 & 5 \\ 12 & 17 \\ 22 & 45 \\ 40 & 60 \\ \hline \end{array} \][/tex]
2. Apply Logarithmic Transformation:
Define [tex]\( u = \ln(x) \)[/tex] where [tex]\( \ln \)[/tex] denotes the natural logarithm. Compute [tex]\( u \)[/tex] for each value of [tex]\( x \)[/tex].
[tex]\[ \begin{array}{|c|c|c|} \hline x & \ln(x) & y \\ \hline 9 & \ln(9) & 5 \\ 12 & \ln(12) & 17 \\ 22 & \ln(22) & 45 \\ 40 & \ln(40) & 60 \\ \hline \end{array} \][/tex]
Which gives us approximately:
[tex]\[ \begin{array}{|c|c|c|} \hline x & \ln(x) & y \\ \hline 9 & 2.1972 & 5 \\ 12 & 2.4849 & 17 \\ 22 & 3.0910 & 45 \\ 40 & 3.6889 & 60 \\ \hline \end{array} \][/tex]
3. Perform Linear Regression on the Transformed Data:
We now perform a linear regression on the data points [tex]\((\ln(x), y)\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \ln(x) & y \\ \hline 2.1972 & 5 \\ 2.4849 & 17 \\ 3.0910 & 45 \\ 3.6889 & 60 \\ \hline \end{array} \][/tex]
We fit a line [tex]\(y = a + b \cdot \ln(x)\)[/tex] to this transformed data.
4. Find the Coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
Using the least squares method (or another suitable method for linear regression), we solve for the coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that best fit the transformed data.
From the calculations and fitting, we obtain the coefficients:
[tex]\[ a = -76.20384525969956 \][/tex]
[tex]\[ b = 37.67347576983646 \][/tex]
5. Construct the Model:
Using the coefficients found, the logarithmic regression model is:
[tex]\[ y = -76.20384525969956 + 37.67347576983646 \ln(x) \][/tex]
So, the regression equation modeling the height of the stalk of corn as a function of the days is:
[tex]\[ y = -76.20384525969956 + 37.67347576983646 \ln(x) \][/tex]
Thus, we have:
[tex]\[ \begin{array}{l} a = -76.20384525969956 \\ b = 37.67347576983646 \end{array} \][/tex]