Examine the data below for a stalk of corn.

[tex]\[
\begin{tabular}{|l|c|c|c|c|}
\hline
Day, $x$ & 9 & 12 & 22 & 40 \\
\hline
Height, $y$ (in) & 5 & 17 & 45 & 60 \\
\hline
\end{tabular}
\][/tex]

Use logarithmic regression to find an equation of the form [tex]$y = a + b \ln (x)$[/tex] to model the data.

[tex]\[
\begin{array}{l}
a = \square \\
b = \square
\end{array}
\][/tex]



Answer :

To find the logarithmic regression model of the form [tex]\( y = a + b \ln(x) \)[/tex] for the given data set, we can follow these steps:

1. Define the Data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 9 & 5 \\ 12 & 17 \\ 22 & 45 \\ 40 & 60 \\ \hline \end{array} \][/tex]

2. Apply Logarithmic Transformation:
Define [tex]\( u = \ln(x) \)[/tex] where [tex]\( \ln \)[/tex] denotes the natural logarithm. Compute [tex]\( u \)[/tex] for each value of [tex]\( x \)[/tex].

[tex]\[ \begin{array}{|c|c|c|} \hline x & \ln(x) & y \\ \hline 9 & \ln(9) & 5 \\ 12 & \ln(12) & 17 \\ 22 & \ln(22) & 45 \\ 40 & \ln(40) & 60 \\ \hline \end{array} \][/tex]

Which gives us approximately:

[tex]\[ \begin{array}{|c|c|c|} \hline x & \ln(x) & y \\ \hline 9 & 2.1972 & 5 \\ 12 & 2.4849 & 17 \\ 22 & 3.0910 & 45 \\ 40 & 3.6889 & 60 \\ \hline \end{array} \][/tex]

3. Perform Linear Regression on the Transformed Data:
We now perform a linear regression on the data points [tex]\((\ln(x), y)\)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline \ln(x) & y \\ \hline 2.1972 & 5 \\ 2.4849 & 17 \\ 3.0910 & 45 \\ 3.6889 & 60 \\ \hline \end{array} \][/tex]

We fit a line [tex]\(y = a + b \cdot \ln(x)\)[/tex] to this transformed data.

4. Find the Coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
Using the least squares method (or another suitable method for linear regression), we solve for the coefficients [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that best fit the transformed data.

From the calculations and fitting, we obtain the coefficients:
[tex]\[ a = -76.20384525969956 \][/tex]
[tex]\[ b = 37.67347576983646 \][/tex]

5. Construct the Model:
Using the coefficients found, the logarithmic regression model is:
[tex]\[ y = -76.20384525969956 + 37.67347576983646 \ln(x) \][/tex]

So, the regression equation modeling the height of the stalk of corn as a function of the days is:

[tex]\[ y = -76.20384525969956 + 37.67347576983646 \ln(x) \][/tex]

Thus, we have:
[tex]\[ \begin{array}{l} a = -76.20384525969956 \\ b = 37.67347576983646 \end{array} \][/tex]