Select all the correct answers.

Which triples are Pythagorean triples?

A. [tex]\((8, 15, 17)\)[/tex]

B. [tex]\((1, \sqrt{3}, 2)\)[/tex]

C. [tex]\((9, 12, 16)\)[/tex]

D. [tex]\((8, 11, 14)\)[/tex]

E. [tex]\((20, 21, 29)\)[/tex]

F. [tex]\((30, 40, 50)\)[/tex]



Answer :

To determine which of the given triples are Pythagorean triples, let's recall the definition: A Pythagorean triple consists of three positive integers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] such that [tex]\(a^2 + b^2 = c^2\)[/tex].

Let’s analyze each of the given triples:

1. Triple [tex]\((8, 15, 17)\)[/tex]:
[tex]\[ 8^2 + 15^2 = 64 + 225 = 289 \][/tex]
[tex]\[ 17^2 = 289 \][/tex]
[tex]\((8, 15, 17)\)[/tex] is a Pythagorean triple because [tex]\(8^2 + 15^2 = 17^2\)[/tex].

2. Triple [tex]\((1, \sqrt{3}, 2)\)[/tex]:
[tex]\[ 1^2 + (\sqrt{3})^2 = 1 + 3 = 4 \][/tex]
[tex]\[ 2^2 = 4 \][/tex]
[tex]\((1, \sqrt{3}, 2)\)[/tex] is a Pythagorean triple because [tex]\(1^2 + (\sqrt{3})^2 = 2^2\)[/tex].

3. Triple [tex]\((9, 12, 16)\)[/tex]:
[tex]\[ 9^2 + 12^2 = 81 + 144 = 225 \][/tex]
[tex]\[ 16^2 = 256 \][/tex]
[tex]\((9, 12, 16)\)[/tex] is not a Pythagorean triple because [tex]\(9^2 + 12^2 \neq 16^2\)[/tex].

4. Triple [tex]\((8, 11, 14)\)[/tex]:
[tex]\[ 8^2 + 11^2 = 64 + 121 = 185 \][/tex]
[tex]\[ 14^2 = 196 \][/tex]
[tex]\((8, 11, 14)\)[/tex] is not a Pythagorean triple because [tex]\(8^2 + 11^2 \neq 14^2\)[/tex].

5. Triple [tex]\((20, 21, 29)\)[/tex]:
[tex]\[ 20^2 + 21^2 = 400 + 441 = 841 \][/tex]
[tex]\[ 29^2 = 841 \][/tex]
[tex]\((20, 21, 29)\)[/tex] is a Pythagorean triple because [tex]\(20^2 + 21^2 = 29^2\)[/tex].

6. Triple [tex]\((30, 40, 50)\)[/tex]:
[tex]\[ 30^2 + 40^2 = 900 + 1600 = 2500 \][/tex]
[tex]\[ 50^2 = 2500 \][/tex]
[tex]\((30, 40, 50)\)[/tex] is a Pythagorean triple because [tex]\(30^2 + 40^2 = 50^2\)[/tex].

So the correct Pythagorean triples are:
[tex]\[ (8, 15, 17), \quad (20, 21, 29), \quad (30, 40, 50) \][/tex]