For each pair of hypotheses that follows, decide whether [tex]$H_0$[/tex] and [tex]$H_1$[/tex] are set up correctly as the null and alternative hypotheses for a hypothesis test. If so, type "Valid" in the box. If not, type "Invalid" in the box.

1.
[tex]H_0: \mu \neq 344[/tex]
[tex]H_1: \mu = 344[/tex]
[tex]\square[/tex]

2.
[tex]H_0: \bar{X} = 165[/tex]
[tex]H_1: \bar{X} \neq 165[/tex]
[tex]\square[/tex]

3.
[tex]H_0: \sigma = 79[/tex]
[tex]H_1: \sigma \neq 79[/tex]
[tex]\square[/tex]

4.
[tex]H_0: \mu = 39[/tex]
[tex]H_1: \mu \neq 39[/tex]
[tex]\square[/tex]



Answer :

Let's analyze each pair of hypotheses to determine whether they are correctly set up as the null and alternative hypotheses for a hypothesis test.

1. Hypotheses:
- [tex]$H_0: \mu \neq 344$[/tex]
- [tex]$H_1: \mu = 344$[/tex]

The null hypothesis ([tex]$H_0$[/tex]) should always include an equality sign (either "=", "≤", or "≥"). In this case, [tex]$H_0$[/tex] contains a "≠" sign, which is incorrect because the null hypothesis should represent a statement of no effect or no difference. Hence, this setup is Invalid.

Answer: Invalid

2. Hypotheses:
- [tex]$H_0: \bar{X} = 165$[/tex]
- [tex]$H_1: \bar{X} \neq 165$[/tex]

The null hypothesis should concern the population parameter, not a sample statistic. Here, [tex]$H_0$[/tex] states that the sample mean [tex]$\bar{X}$[/tex] equals 165 instead of the population mean [tex]$\mu$[/tex]. This makes the hypothesis setup incorrect. Therefore, this setup is Invalid.

Answer: Invalid

3. Hypotheses:
- [tex]$H_0: \sigma = 79$[/tex]
- [tex]$H_1: \sigma \neq 79$[/tex]

In this case, the null hypothesis states that the population standard deviation [tex]$\sigma$[/tex] equals 79, and the alternative hypothesis states that [tex]$\sigma$[/tex] is not equal to 79. Both statements involve the population parameter, and the null hypothesis includes an equality sign, as required. Hence, this setup is Valid.

Answer: Valid

4. Hypotheses:
- [tex]$H_0: \mu = 39$[/tex]
- [tex]$H_1: \mu \neq 39$[/tex]

Here, the null hypothesis states that the population mean [tex]$\mu$[/tex] equals 39, and the alternative hypothesis states that [tex]$\mu$[/tex] is not equal to 39. Both statements involve the population parameter, and the null hypothesis includes an equality sign, as required. Therefore, this setup is Valid.

Answer: Valid

In conclusion, the answers are as follows:
1. Invalid
2. Invalid
3. Valid
4. Valid