2. If [tex]\( x \)[/tex] varies inversely as [tex]\( t \)[/tex], and [tex]\( x = 8 \)[/tex] when [tex]\( t = 6 \)[/tex], find [tex]\( t \)[/tex] when [tex]\( x = 12 \)[/tex].

3. If [tex]\( r \)[/tex] varies directly with [tex]\( t \)[/tex], rewrite the equation.



Answer :

Alright, let's tackle this problem step-by-step.

When a variable [tex]\( x \)[/tex] varies inversely as a variable [tex]\( t \)[/tex], it means that their product is a constant. This relationship can be written as:

[tex]\[ x \times t = k \][/tex]

where [tex]\( k \)[/tex] is a constant.

We are given:
- [tex]\( x = 8 \)[/tex] when [tex]\( t = 6 \)[/tex].

Using the inverse variation formula, we can determine the constant [tex]\( k \)[/tex]:

[tex]\[ 8 \times 6 = k \][/tex]

Calculating the value of [tex]\( k \)[/tex]:

[tex]\[ k = 48 \][/tex]

Now we need to find the value of [tex]\( t \)[/tex] when [tex]\( x = 12 \)[/tex].

Again, using the inverse variation formula:

[tex]\[ x \times t = k \][/tex]

Substitute [tex]\( x = 12 \)[/tex] and [tex]\( k = 48 \)[/tex] into the formula:

[tex]\[ 12 \times t = 48 \][/tex]

Solving for [tex]\( t \)[/tex]:

[tex]\[ t = \frac{48}{12} \][/tex]
[tex]\[ t = 4 \][/tex]

So, when [tex]\( x = 12 \)[/tex], [tex]\( t = 4 \)[/tex].

Thus, the constant [tex]\( k \)[/tex] is [tex]\( 48 \)[/tex], and the value of [tex]\( t \)[/tex] when [tex]\( x = 12 \)[/tex] is [tex]\( 4.0 \)[/tex].