Answer :
Sure, let’s solve this step-by-step.
Given the expression:
[tex]\[ \frac{7.42 \times 10^{44}}{1.4 \times 10^{20}} \][/tex]
1. Separate the coefficients and the powers of 10:
[tex]\[ \frac{7.42}{1.4} \times \frac{10^{44}}{10^{20}} \][/tex]
2. Divide the coefficients:
[tex]\[ \frac{7.42}{1.4} = 5.3 \][/tex]
This calculation simplifies the division of the numerical coefficients.
3. Subtract the exponents:
[tex]\[ 10^{44 - 20} = 10^{24} \][/tex]
When dividing powers of 10, you subtract the exponent in the denominator from the exponent in the numerator.
4. Combine the results:
[tex]\[ 5.3 \times 10^{24} \][/tex]
Thus, the result of the division [tex]\(\frac{7.42 \times 10^{44}}{1.4 \times 10^{20}}\)[/tex] in scientific notation is:
[tex]\[ 5.30 \times 10^{24} \][/tex]
This is both in standard form and expressed in appropriate scientific notation.
Given the expression:
[tex]\[ \frac{7.42 \times 10^{44}}{1.4 \times 10^{20}} \][/tex]
1. Separate the coefficients and the powers of 10:
[tex]\[ \frac{7.42}{1.4} \times \frac{10^{44}}{10^{20}} \][/tex]
2. Divide the coefficients:
[tex]\[ \frac{7.42}{1.4} = 5.3 \][/tex]
This calculation simplifies the division of the numerical coefficients.
3. Subtract the exponents:
[tex]\[ 10^{44 - 20} = 10^{24} \][/tex]
When dividing powers of 10, you subtract the exponent in the denominator from the exponent in the numerator.
4. Combine the results:
[tex]\[ 5.3 \times 10^{24} \][/tex]
Thus, the result of the division [tex]\(\frac{7.42 \times 10^{44}}{1.4 \times 10^{20}}\)[/tex] in scientific notation is:
[tex]\[ 5.30 \times 10^{24} \][/tex]
This is both in standard form and expressed in appropriate scientific notation.
Answer: 5.3 × 10²⁴
Step-by-step explanation:
How to divide scientific notation:
- Divide the coefficients by each other: [tex]\frac{7.42}{1.4}[/tex] = 5.3
- Subtract the exponents of the bases by each other: 44-20= 24
- Now rewrite your equation:
[tex]\frac{(7.42)(10^{44})}{(1.4)(10^{20}) }[/tex] = 5.3 × 10²⁴