Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]



Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]\[\frac{d y}{d x}=\left(x^{1 / 7}-35\right) x^{-2}\][/tex]
-----

Response:
[tex]\[ \frac{dy}{dx} = \left( x^{1/7} - 35 \right) x^{-2} \][/tex]



Answer :

Of course! Let's find the derivative of the function [tex]\( y = \left(x^{1/7} - 35\right) x^{-2} \)[/tex].

First, let's clarify the function we need to differentiate:
[tex]\[ y = (x^{1/7} - 35) x^{-2} \][/tex]

To differentiate this product, we will use the product rule, which states:
[tex]\[ \frac{d}{dx} [u \cdot v] = u' \cdot v + u \cdot v' \][/tex]

In our case, we will set:
[tex]\[ u = x^{1/7} - 35 \][/tex]
[tex]\[ v = x^{-2} \][/tex]

Now, we'll find the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
1. Differentiate [tex]\( u = x^{1/7} - 35 \)[/tex]:
[tex]\[ u' = \frac{d}{dx} (x^{1/7} - 35) = \frac{1}{7} x^{1/7 - 1} \][/tex]
[tex]\[ u' = \frac{1}{7} x^{-6/7} \][/tex]

2. Differentiate [tex]\( v = x^{-2} \)[/tex]:
[tex]\[ v' = \frac{d}{dx} (x^{-2}) = -2 x^{-3} \][/tex]

Now we apply the product rule:
[tex]\[ \frac{dy}{dx} = u' \cdot v + u \cdot v' \][/tex]

Substituting [tex]\( u, u', v, \)[/tex] and [tex]\( v' \)[/tex] into the product rule:
[tex]\[ \frac{dy}{dx} = \left(\frac{1}{7} x^{-6/7}\right) \cdot x^{-2} + (x^{1/7} - 35) \cdot (-2 x^{-3}) \][/tex]

We now simplify each term:
1. Simplify [tex]\( \left(\frac{1}{7} x^{-6/7}\right) \cdot x^{-2} \)[/tex]:
[tex]\[ \left(\frac{1}{7} x^{-6/7}\right) \cdot x^{-2} = \frac{1}{7} x^{-6/7 - 2} = \frac{1}{7} x^{-6/7 - 14/7} = \frac{1}{7} x^{-20/7} \][/tex]

2. Simplify [tex]\((x^{1/7} - 35) \cdot (-2 x^{-3}) \)[/tex]:
[tex]\[ (x^{1/7} - 35) \cdot (-2 x^{-3}) = -2 (x^{1/7 - 3}) + 70 x^{-3} \][/tex]
[tex]\[ -2 (x^{1/7 - 3}) + 70 x^{-3} = -2 x^{-20/7} + 70 x^{-3} \][/tex]

Combining these simplified terms:
[tex]\[ \frac{dy}{dx} = \frac{1}{7} x^{-20/7} - 2 x^{-20/7} + 70 x^{-3} \][/tex]

Factorizing the common terms:
[tex]\[ \frac{dy}{dx} = \left(\frac{1}{7} - 2\right) x^{-20/7} + 70 x^{-3} \][/tex]
[tex]\[ \frac{dy}{dx} = \left(-\frac{13}{7}\right) x^{-20/7} + 70 x^{-3} \][/tex]

So, the derivative of the function [tex]\( y = (x^{1/7} - 35) x^{-2} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = 0.142857 \frac{1}{x^{2.85714}} - \frac{2(x^{0.142857} - 35)}{x^{3}} \][/tex]

This gives us our final answer.