Complete the definition of the piecewise defined function by identifying the domain of each piece.

[tex]\[
f(x) =
\begin{cases}
-x, & x \ \textless \ a \\
-1, & a \leq x \ \textless \ b \\
(x-3)^2 - 1, & x \geq b
\end{cases}
\][/tex]

[tex]\[ a = \square \quad b = \square \][/tex]



Answer :

To complete the definition of the piecewise function [tex]\( f(x) \)[/tex] by identifying the domains of each piece, we first need to determine the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex].

Given the piecewise function:
[tex]\[ f(x) = \begin{cases} -x, & x < a \\ -1, & a \leq x < b \\ (x-3)^2 - 1, & x \geq b \end{cases} \][/tex]

After solving the conditions for continuity at the transition points [tex]\( x = a \)[/tex] and [tex]\( x = b \)[/tex], we have:

[tex]\[ a = 1 \][/tex]
[tex]\[ b = 3 \][/tex]

Using these values, we can now specify the domains for each piece of the function:

1. For the first piece [tex]\( f(x) = -x \)[/tex]:
[tex]\[ x < a \implies x < 1 \][/tex]
The domain of this piece is [tex]\( x < 1 \)[/tex].

2. For the second piece [tex]\( f(x) = -1 \)[/tex]:
[tex]\[ a \leq x < b \implies 1 \leq x < 3 \][/tex]
The domain of this piece is [tex]\( 1 \leq x < 3 \)[/tex].

3. For the third piece [tex]\( f(x) = (x - 3)^2 - 1 \)[/tex]:
[tex]\[ x \geq b \implies x \geq 3 \][/tex]
The domain of this piece is [tex]\( x \geq 3 \)[/tex].

Thus, the completed definition of the piecewise function with the identified domains is:
[tex]\[ f(x) = \begin{cases} -x, & x < 1 \\ -1, & 1 \leq x < 3 \\ (x-3)^2 - 1, & x \geq 3 \end{cases} \][/tex]