Type the correct answer in the box. Use numerals instead of words.

Use the properties of exponents to rewrite this expression. Then evaluate the rewritten expression for the given values of [tex]\( m \)[/tex] and [tex]\( n \)[/tex] to complete the statement.

[tex]\[ \left(7 m^{-2} m^2 n \right)^2 \][/tex]

When [tex]\( m = -6 \)[/tex] and [tex]\( n = 2 \)[/tex], the value of the expression is [tex]\(\square\)[/tex].



Answer :

To simplify and evaluate the expression [tex]\(\left(7 m^{-2} m^2 n \right)^2\)[/tex] for [tex]\(m = -6\)[/tex] and [tex]\(n = 2\)[/tex], follow these steps:

1. Simplify the expression using properties of exponents:
[tex]\[ \left(7 m^{-2} m^2 n \right)^2 \][/tex]

2. Using the properties of exponents, combine [tex]\(m^{-2} \cdot m^2\)[/tex]:
[tex]\[ m^{-2} \cdot m^2 = m^{-2+2} = m^0 \][/tex]
And we know that any number raised to the power of 0 is 1:
[tex]\[ m^0 = 1 \][/tex]

3. The expression now simplifies to:
[tex]\[ \left(7 \cdot 1 \cdot n \right)^2 \][/tex]
Which is:
[tex]\[ \left(7n\right)^2 \][/tex]

4. Substitute the given values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex] into the simplified expression:
When [tex]\(n = 2\)[/tex]:
[tex]\[ \left(7 \cdot 2\right)^2 = (14)^2 \][/tex]

5. Evaluate [tex]\((14)^2\)[/tex]:
[tex]\[ (14)^2 = 196 \][/tex]

Therefore, when [tex]\(m = -6\)[/tex] and [tex]\(n = 2\)[/tex], the value of the expression is:
[tex]\[ 196 \][/tex]