What is the sum of the measures of the interior angles of a regular polygon if each exterior angle measures [tex]$120^{\circ}$[/tex]?

A. [tex]$540^{\circ}$[/tex]
B. [tex][tex]$900^{\circ}$[/tex][/tex]
C. [tex]$720^{\circ}$[/tex]
D. [tex]$360^{\circ}$[/tex]
E. [tex][tex]$1080^{\circ}$[/tex][/tex]
F. [tex]$180^{\circ}$[/tex]



Answer :

To determine the sum of the measures of the interior angles of a regular polygon where each exterior angle measures [tex]\( 120^\circ \)[/tex], follow these steps:

1. Understanding Exterior Angles of a Polygon:
The exterior angles of any polygon always add up to [tex]\( 360^\circ \)[/tex].

2. Find the Number of Sides:
The measure of each exterior angle is given as [tex]\( 120^\circ \)[/tex]. The number of sides of the polygon can be found by dividing [tex]\( 360^\circ \)[/tex] by the measure of each exterior angle:
[tex]\[ \text{Number of sides} = \frac{360^\circ}{120^\circ} = 3 \][/tex]
So, the polygon has 3 sides and is a triangle.

3. Calculate the Sum of the Interior Angles:
The formula to find the sum of the interior angles of a polygon with [tex]\( n \)[/tex] sides is:
[tex]\[ \text{Sum of the interior angles} = (n - 2) \times 180^\circ \][/tex]
For a triangle ([tex]\( n = 3 \)[/tex]):
[tex]\[ \text{Sum of the interior angles} = (3 - 2) \times 180^\circ = 1 \times 180^\circ = 180^\circ \][/tex]

Therefore, the sum of the measures of the interior angles of this polygon is:
[tex]\[ 180^\circ \][/tex]

So, the correct answer is [tex]\( \boxed{180^\circ} \)[/tex].