What is the product?

[tex]\[ (-3s + 2t)(4s - t) \][/tex]

A. [tex]\(-12s^2 - 2t^2\)[/tex]

B. [tex]\(-12s^2 + 2t^2\)[/tex]

C. [tex]\(-12s^2 + 8st - 2t^2\)[/tex]

D. [tex]\(-12s^2 + 11st - 2t^2\)[/tex]



Answer :

To find the product of [tex]\((-3s + 2t)(4s - t)\)[/tex], let's proceed with a step-by-step expansion.

First, use the distributive property (also known as the FOIL method for binomials) to multiply each term in the first parenthesis by each term in the second parenthesis:

[tex]\[ (-3s + 2t)(4s - t) \][/tex]

1. Multiply [tex]\(-3s\)[/tex] by [tex]\(4s\)[/tex]:
[tex]\[ -3s \cdot 4s = -12s^2 \][/tex]

2. Multiply [tex]\(-3s\)[/tex] by [tex]\(-t\)[/tex]:
[tex]\[ -3s \cdot -t = 3st \][/tex]

3. Multiply [tex]\(2t\)[/tex] by [tex]\(4s\)[/tex]:
[tex]\[ 2t \cdot 4s = 8st \][/tex]

4. Multiply [tex]\(2t\)[/tex] by [tex]\(-t\)[/tex]:
[tex]\[ 2t \cdot -t = -2t^2 \][/tex]

Now, combine all these products together:
[tex]\[ -12s^2 + 3st + 8st - 2t^2 \][/tex]

Next, combine like terms ([tex]\(3st\)[/tex] and [tex]\(8st\)[/tex]):
[tex]\[ -12s^2 + (3st + 8st) - 2t^2 = -12s^2 + 11st - 2t^2 \][/tex]

Therefore, the expanded product of [tex]\((-3s + 2t)(4s - t)\)[/tex] is:
[tex]\[ -12s^2 + 11st - 2t^2 \][/tex]

Out of the given choices, the correct answer is:
[tex]\[ \boxed{-12s^2 + 11st - 2t^2} \][/tex]