Given: [tex]\( x - 5 \ \textgreater \ -2 \)[/tex]

Choose the solution set.

A. [tex]\( \{ x \mid x \in \mathbb{R}, x \ \textgreater \ -7 \} \)[/tex]

B. [tex]\( \{ x \mid x \in \mathbb{R}, x \ \textgreater \ -3 \} \)[/tex]

C. [tex]\( \{ x \mid x \in \mathbb{R}, x \ \textgreater \ 3 \} \)[/tex]

D. [tex]\( \{ x \mid x \in \mathbb{R}, x \ \textgreater \ 7 \} \)[/tex]



Answer :

Let's solve the given inequality step-by-step:

Given inequality:
[tex]\[ x - 5 > -2 \][/tex]

To isolate [tex]\( x \)[/tex], we will add 5 to both sides of the inequality. This step ensures that [tex]\( x \)[/tex] is by itself on the left side.

[tex]\[ x - 5 + 5 > -2 + 5 \][/tex]

Simplifying both sides, we get:

[tex]\[ x > 3 \][/tex]

Thus, the solution set for this inequality is the set of all [tex]\( x \)[/tex] such that [tex]\( x \)[/tex] is greater than 3.

Now, let's match this with the given choices:

1. [tex]\([x \mid x \in R, x > -7]\)[/tex]
2. [tex]\(\{x \mid x \in R, x > -3\}\)[/tex]
3. [tex]\(\{x \mid x \in R, x > 3\}\)[/tex]
4. [tex]\([x \mid x \in R, x > 7]\)[/tex]

The correct solution set is:

[tex]\(\{x \mid x \in R, x > 3\}\)[/tex]

So, the solution set for the given inequality [tex]\( x - 5 > -2 \)[/tex] is [tex]\(\{x \mid x \in R, x > 3\}\)[/tex].