Type the correct answer in each box.

In part [tex]$E$[/tex], you proved that any Pythagorean triple can be generated using the identity [tex]$\left(x^2-y^2\right)^2+(2 x y)^2=\left(x^2+y^2\right)^2$[/tex]. Find the missing [tex]$x$[/tex]- and [tex]$y$[/tex]-values and Pythagorean triples using the identity given. Write the triple in parentheses, without spaces between the values, with a comma between values, and in order from least to greatest.

\begin{tabular}{|c|c|c|}
\hline [tex]$x$[/tex]-value & [tex]$y$[/tex]-value & Pythagorean Triple \\
\hline 4 & 3 & [tex]$(7,24,25)$[/tex] \\
\hline 5 & 2 & [tex]$(9,40,41)$[/tex] \\
\hline 6 & 3 & [tex]$(27,36,45)$[/tex] \\
\hline 7 & 5 & [tex]$(24,70,74)$[/tex] \\
\hline
\end{tabular}



Answer :

Let's find the missing values and the Pythagorean triples for each given pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

1. For [tex]\( x = 4 \)[/tex] and [tex]\( y = 3 \)[/tex]:
[tex]\[ \left(x^2 - y^2\right)^2 + \left(2xy\right)^2 = \left(x^2 + y^2\right)^2 \][/tex]
- [tex]\( x^2 - y^2 = 4^2 - 3^2 = 16 - 9 = 7 \)[/tex]
- [tex]\( 2xy = 2 \cdot 4 \cdot 3 = 24 \)[/tex]
- [tex]\( x^2 + y^2 = 4^2 + 3^2 = 16 + 9 = 25 \)[/tex]

The sorted Pythagorean triple is:
[tex]\[ (7, 24, 25) \][/tex]

2. For [tex]\( x = 5 \)[/tex] and an unknown [tex]\( y \)[/tex]:
Given the Pythagorean triple is [tex]\( (9, 40, 41) \)[/tex].
- The triple components [tex]\( 9, 40, 41 \)[/tex].
The correct [tex]\( y \)[/tex]-value for these components is [tex]\( 4 \)[/tex].

3. For unknown [tex]\( x \)[/tex] and [tex]\( y = 3 \)[/tex]:
Given the Pythagorean triple is [tex]\( (27, 36, 45) \)[/tex].
- The triple components [tex]\( 27, 36, 45 \)[/tex].
The correct [tex]\( x \)[/tex]-value for these components is [tex]\( 6 \)[/tex].

4. For [tex]\( x = 7 \)[/tex] and [tex]\( y = 5 \)[/tex]:
[tex]\[ \left(x^2 - y^2\right)^2 + \left(2xy\right)^2 = \left(x^2 + y^2\right)^2 \][/tex]
- [tex]\( x^2 - y^2 = 7^2 - 5^2 = 49 - 25 = 24 \)[/tex]
- [tex]\( 2xy = 2 \cdot 7 \cdot 5 = 70 \)[/tex]
- [tex]\( x^2 + y^2 = 7^2 + 5^2 = 49 + 25 = 74 \)[/tex]

The sorted Pythagorean triple is:
[tex]\[ (24, 70, 74) \][/tex]

Putting all this together:

[tex]\[ \begin{array}{|c|c|c|} \hline x\text{-value} & y\text{-value} & \text{Pythagorean Triple} \\ \hline 4 & 3 & (7,24,25) \\ \hline 5 & 4 & (9,40,41) \\ \hline 6 & 3 & (27,36,45) \\ \hline 7 & 5 & (24,70,74) \\ \hline \end{array} \][/tex]