Given [tex]$n(t)=-2(t+5)^2+4$[/tex], find [tex]$n(-8)$[/tex].

A. [tex]-334[/tex]
B. [tex]-14[/tex]
C. [tex]45[/tex]
D. [tex]445[/tex]



Answer :

To solve the problem [tex]\( n(t) = -2(t + 5)^2 + 4 \)[/tex] and find [tex]\( n(-8) \)[/tex], follow these steps:

1. Start with the given function:
[tex]\[ n(t) = -2(t + 5)^2 + 4 \][/tex]

2. Substitute [tex]\( t \)[/tex] with [tex]\( -8 \)[/tex]:
[tex]\[ n(-8) = -2((-8) + 5)^2 + 4 \][/tex]

3. Simplify the expression inside the parentheses:
[tex]\[ -8 + 5 = -3 \][/tex]
So the expression now becomes:
[tex]\[ n(-8) = -2(-3)^2 + 4 \][/tex]

4. Calculate the square of [tex]\(-3\)[/tex]:
[tex]\[ (-3)^2 = 9 \][/tex]
So the expression simplifies to:
[tex]\[ n(-8) = -2 \times 9 + 4 \][/tex]

5. Perform the multiplication:
[tex]\[ -2 \times 9 = -18 \][/tex]
Now the expression is:
[tex]\[ n(-8) = -18 + 4 \][/tex]

6. Finally, add [tex]\( -18 \)[/tex] and [tex]\( 4 \)[/tex]:
[tex]\[ -18 + 4 = -14 \][/tex]

Hence, the value of [tex]\( n(-8) \)[/tex] is:
[tex]\[ n(-8) = -14 \][/tex]

Therefore, the correct answer from the given options is:
[tex]\[ -14 \][/tex]