Applying the Binomial Theorem

In this activity, you'll find the expanded form of the binomial expression [tex](x+y)^4[/tex] using the binomial theorem. Answer the following questions to expand the binomial expression [tex](x+y)^4[/tex] using the binomial theorem.
[tex]\[
(a+b)^n = a^n + \frac{n}{1!} a^{n-1} b^1 + \frac{n(n-1)}{2!} a^{n-2} b^2 + \frac{n(n-1)(n-2)}{3!} a^{n-3} b^3 + \cdots + b^n
\][/tex]

Part A

Determine the first term of the binomial expansion [tex](x+y)^4[/tex].

Part B

Determine the second term of the binomial expansion [tex](x+y)^4[/tex].



Answer :

The binomial theorem provides a way to expand expressions of the form [tex]\((a + b)^n\)[/tex]. According to the binomial theorem, the expanded form is given by:

[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k, \][/tex]

where [tex]\(\binom{n}{k}\)[/tex] is the binomial coefficient, calculated as [tex]\(\binom{n}{k} = \frac{n!}{k! (n-k)!}\)[/tex].

### Part A: Determine the first term of the binomial expansion [tex]\((x + y)^4\)[/tex].

The first term in the binomial expansion corresponds to [tex]\(k = 0\)[/tex]. So, we take:

[tex]\[ \binom{4}{0} x^{4-0} y^0 \][/tex]

Calculating the binomial coefficient [tex]\(\binom{4}{0}\)[/tex]:

[tex]\[ \binom{4}{0} = \frac{4!}{0! \cdot 4!} = 1 \][/tex]

So, the first term becomes:

[tex]\[ 1 \cdot x^{4} \cdot y^0 = x^4 \][/tex]

Thus, the first term is:

[tex]\[ x^4 \][/tex]

### Part B: Determine the second term of the binomial expansion [tex]\((x + y)^4\)[/tex].

The second term corresponds to [tex]\(k = 1\)[/tex]. So, we take:

[tex]\[ \binom{4}{1} x^{4-1} y^1 \][/tex]

Calculating the binomial coefficient [tex]\(\binom{4}{1}\)[/tex]:

[tex]\[ \binom{4}{1} = \frac{4!}{1! \cdot 3!} = \frac{4 \cdot 3!}{1 \cdot 3!} = 4 \][/tex]

So, the second term becomes:

[tex]\[ 4 \cdot x^3 \cdot y^1 = 4x^3 y \][/tex]

Thus, the second term is:

[tex]\[ 4x^3y \][/tex]