Donte simplified the expression below.

[tex]\[
\begin{array}{l}
4(1 + 3i) - (8 - 5i) \\
4 + 12i - 8 + 5i \\
-4 + 17i
\end{array}
\][/tex]

What mistake did Donte make?

A. He did not apply the distributive property correctly for [tex]\(4(1 + 3i)\)[/tex].

B. He did not distribute the subtraction sign correctly for [tex]\(8 - 5i\)[/tex].

C. He added the real number and coefficient of [tex]\(i\)[/tex] in [tex]\(4(1 + 3i)\)[/tex].

D. He added the two complex numbers instead of subtracting.



Answer :

To identify and explain Donte's mistake, let's simplify the expression [tex]\(4(1 + 3i) - (8 - 5i)\)[/tex] step by step correctly:

1. Applying the distributive property:
- For [tex]\(4(1 + 3i)\)[/tex]:
[tex]\[ 4 \cdot 1 + 4 \cdot 3i = 4 + 12i \][/tex]

2. Distributing the minus sign:
- For [tex]\(-(8 - 5i)\)[/tex]:
[tex]\[ -8 + 5i \][/tex]

3. Combining the results:
- Add [tex]\(4 + 12i\)[/tex] and [tex]\(-8 + 5i\)[/tex]:
[tex]\[ (4 + 12i) - (8 - 5i) = 4 + 12i - 8 + 5i \][/tex]

4. Simplifying the final expression:
- Combine the real numbers: [tex]\(4 - 8 = -4\)[/tex]
- Combine the imaginary parts: [tex]\(12i + 5i = 17i\)[/tex]
[tex]\[ -4 + 17i \][/tex]

Now, let's look at Donte's steps and identify the mistake:

1. Donte rewrote the expression as:
[tex]\[ 4 + 3i - 8 + 5i \][/tex]
This step is incorrect because it seems like Donte mistakenly added the real number 4 and the imaginary coefficient [tex]\(3i\)[/tex] individually without correctly applying the distributive property.

Thus, Donte's mistake was:
He added the real number and coefficient of [tex]\(4(1+3i)\)[/tex] instead of multiplying.