A spherical water balloon has a radius of 6 inches. How many cubic inches of water will it hold?

A. [tex]\(288 \, \text{in}^3\)[/tex]
B. [tex]\(78 \, \text{in}^3\)[/tex]
C. [tex]\(144 \, \text{in}^3\)[/tex]
D. [tex]\(214 \, \text{in}^3\)[/tex]
E. There is no correct answer given.



Answer :

To determine how many cubic inches of water a spherical water balloon with a radius of 6 inches will hold, we need to calculate the volume of the sphere. The formula for the volume [tex]\(V\)[/tex] of a sphere is given by:

[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]

where:
- [tex]\( \pi \)[/tex] (pi) is approximately 3.14159,
- [tex]\( r \)[/tex] is the radius of the sphere.

Given that the radius [tex]\( r \)[/tex] is 6 inches, we can substitute this value into the formula:

[tex]\[ V = \frac{4}{3} \pi (6)^3 \][/tex]

First, calculate [tex]\( 6^3 \)[/tex]:

[tex]\[ 6^3 = 6 \times 6 \times 6 = 216 \][/tex]

Next, substitute [tex]\( 216 \)[/tex] into the volume formula:

[tex]\[ V = \frac{4}{3} \pi \times 216 \][/tex]

Multiply [tex]\( \frac{4}{3} \)[/tex] by [tex]\( 216 \)[/tex]:

[tex]\[ \frac{4}{3} \times 216 = 288 \][/tex]

Then, multiply [tex]\( 288 \)[/tex] by [tex]\( \pi \)[/tex] (approximately 3.14159):

[tex]\[ V = 288 \times \pi \approx 288 \times 3.14159 \approx 904.7786842338603 \][/tex]

Therefore, the volume of the spherical water balloon is approximately 904.78 cubic inches. None of the provided answer choices (288 in³, 78 in³, 144 in³, 214 in³) match the calculated volume. Hence, the correct selection is:

[tex]\[ \boxed{\text{There is no correct answer given.}} \][/tex]