If [tex]\( f(x) = -5^x - 4 \)[/tex] and [tex]\( g(x) = -3x - 2 \)[/tex], find [tex]\((f + g)(x)\)[/tex].

A. [tex]\( (f + g)(x) = 5^x + 3x + 6 \)[/tex]
B. [tex]\( (f + g)(x) = -5^x - 3x - 6 \)[/tex]
C. [tex]\( (f + g)(x) = -5^x - 7x - 2 \)[/tex]
D. [tex]\( (f + g)(x) = -8x - 6 \)[/tex]



Answer :

Sure, let's solve the problem step by step.

We are given two functions:
[tex]\[ f(x) = -5^x - 4 \][/tex]
[tex]\[ g(x) = -3x - 2 \][/tex]

We need to find the combined function [tex]\((f+g)(x)\)[/tex], which is the sum of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].

To do this, we sum the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]

Substitute the given expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:

[tex]\[ (f+g)(x) = (-5^x - 4) + (-3x - 2) \][/tex]

Combine the like terms:

[tex]\[ (f+g)(x) = -5^x - 4 - 3x - 2 \][/tex]

Further simplify by combining the constants:

[tex]\[ (f+g)(x) = -5^x - 3x - (4 + 2) \][/tex]
[tex]\[ (f+g)(x) = -5^x - 3x - 6 \][/tex]

Therefore, the function [tex]\((f+g)(x)\)[/tex] is:

[tex]\[ (f+g)(x) = -5^x - 3x - 6 \][/tex]

Comparing this with the provided options, the correct answer is:

B. [tex]\((f+g)(x) = -5^x - 3x - 6\)[/tex]