Simplify the given expression using only positive exponents. Then complete the statements that follow.

[tex]\left[\frac{\left(x^2 y^3\right)^{-1}}{\left(x^{-2} y^2 z\right)^2}\right], x \neq 0, y \neq 0, z \neq 0[/tex]

The exponent on [tex]x[/tex] is [tex]\square[/tex] [tex]\checkmark[/tex].

The exponent on [tex]y[/tex] is [tex]\square[/tex] [tex]\checkmark[/tex].

The exponent on [tex]z[/tex] is [tex]\square[/tex] [tex]\checkmark[/tex].

Type "numerator" or "denominator" to complete each statement.
[tex]x^4[/tex] is in the [tex]\square[/tex].
[tex]y^{14}[/tex] is in the [tex]\square[/tex].
[tex]z^4[/tex] is in the [tex]\square[/tex].



Answer :

Let's simplify the given expression step-by-step and complete the statements accordingly:

Given expression:
[tex]\[ \left[\frac{\left(x^2 y^3\right)^{-1}}{\left(x^{-2} y^2 z\right)^2}\right], \quad x \neq 0, y \neq 0, z \neq 0 \][/tex]

### Step 1: Simplify the Numerator
The numerator is:
[tex]\[ (x^2 y^3)^{-1} \][/tex]
Using the property [tex]\((a^m)^{-1} = a^{-m}\)[/tex], we get:
[tex]\[ (x^2 y^3)^{-1} = x^{-2} y^{-3} \][/tex]

### Step 2: Simplify the Denominator
The denominator is:
[tex]\[ (x^{-2} y^2 z)^2 \][/tex]
Using the property [tex]\((a \cdot b \cdot c)^m = a^m \cdot b^m \cdot c^m\)[/tex], we get:
[tex]\[ (x^{-2} y^2 z)^2 = x^{-4} y^4 z^2 \][/tex]

### Step 3: Combine the Numerator and Denominator
We now have the simplified expression as:
[tex]\[ \frac{x^{-2} y^{-3}}{x^{-4} y^4 z^2} \][/tex]

### Step 4: Simplify the Expression by Subtracting Exponents
When you divide terms with the same base, you subtract their exponents:
[tex]\[ \frac{x^{-2}}{x^{-4}} = x^{(-2) - (-4)} = x^{2} \][/tex]
[tex]\[ \frac{y^{-3}}{y^4} = y^{-3 - 4} = y^{-7} \][/tex]
[tex]\[ \frac{1}{z^2} = z^{-2} \][/tex]

Therefore, the simplified expression is:
[tex]\[ x^2 y^{-7} z^{-2} \][/tex]

### Step 5: Rewrite the Expression with Positive Exponents
For positive exponents, we move [tex]\( y^{-7} \)[/tex] and [tex]\( z^{-2} \)[/tex] to the denominator:
[tex]\[ x^2 y^{-7} z^{-2} = \frac{x^2}{y^7 z^2} \][/tex]

### Exponents and Positions
1. The exponent on [tex]\( x \)[/tex] is [tex]\( 2 \)[/tex]. It is in the numerator.
2. The exponent on [tex]\( y \)[/tex] is [tex]\( 7 \)[/tex]. It is in the denominator.
3. The exponent on [tex]\( z \)[/tex] is [tex]\( 2 \)[/tex]. It is in the denominator.

Now, let's complete the statements:

The exponent on [tex]\( x \)[/tex] is [tex]\( 2 \)[/tex] [tex]\(\square\)[/tex] [tex]\(\checkmark\)[/tex].

The exponent on [tex]\( y \)[/tex] is [tex]\( 7 \)[/tex] [tex]\(14\)[/tex] [tex]\(\square\)[/tex] [tex]\(\checkmark\)[/tex].

The exponent on [tex]\( z \)[/tex] is [tex]\( 2 \)[/tex] [tex]\(\square\)[/tex] [tex]\(\checkmark\)[/tex].

[tex]\( x^2 \)[/tex] is in the [tex]\(\text{numerator}\)[/tex].

[tex]\( y^7 \)[/tex] is in the [tex]\(\text{denominator}\)[/tex].

[tex]\( z^2 \)[/tex] is in the [tex]\(\text{denominator}\)[/tex].

So, the final answer is:

- The exponent on [tex]\( x \)[/tex] is [tex]\( 2 \)[/tex].
- The exponent on [tex]\( y \)[/tex] is [tex]\( 7 \)[/tex].
- The exponent on [tex]\( z \)[/tex] is [tex]\( 2 \)[/tex].
- [tex]\( x^2 \)[/tex] is in the numerator.
- [tex]\( y^7 \)[/tex] is in the denominator.
- [tex]\( z^2 \)[/tex] is in the denominator.