The city council has approved the building of a circular garden in front of city hall. The garden will have a radius of 12 feet. What is the area of the garden?

A. [tex]$576 \pi \, \text{ft}^2$[/tex]
B. [tex]$144 \pi \, \text{ft}^2$[/tex]
C. [tex][tex]$288 \pi \, \text{ft}^2$[/tex][/tex]
D. [tex]$24 \pi \, \text{ft}^2$[/tex]



Answer :

To find the area of a circular garden, we use the formula for the area of a circle, which is:

[tex]\[ \text{Area} = \pi r^2 \][/tex]

where [tex]\( r \)[/tex] is the radius of the circle. In this scenario, the radius [tex]\( r \)[/tex] of the garden is given as 12 feet.

Let's substitute the given radius into the formula:

[tex]\[ \text{Area} = \pi \times (12)^2 \][/tex]

First, calculate [tex]\( (12)^2 \)[/tex]:

[tex]\[ (12)^2 = 144 \][/tex]

Next, multiply this result by [tex]\( \pi \)[/tex]:

[tex]\[ \text{Area} = \pi \times 144 \][/tex]

So, the area of the circular garden is:

[tex]\[ 144\pi \, \text{ft}^2 \][/tex]

Among the provided options, the correct one is:

[tex]\[ 144\pi \, \text{ft}^2 \][/tex]

Therefore, the area of the garden is [tex]\( 144 \pi \, \text{ft}^2 \)[/tex].