To find the area of a circular garden, we use the formula for the area of a circle, which is:
[tex]\[ \text{Area} = \pi r^2 \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle. In this scenario, the radius [tex]\( r \)[/tex] of the garden is given as 12 feet.
Let's substitute the given radius into the formula:
[tex]\[ \text{Area} = \pi \times (12)^2 \][/tex]
First, calculate [tex]\( (12)^2 \)[/tex]:
[tex]\[ (12)^2 = 144 \][/tex]
Next, multiply this result by [tex]\( \pi \)[/tex]:
[tex]\[ \text{Area} = \pi \times 144 \][/tex]
So, the area of the circular garden is:
[tex]\[ 144\pi \, \text{ft}^2 \][/tex]
Among the provided options, the correct one is:
[tex]\[ 144\pi \, \text{ft}^2 \][/tex]
Therefore, the area of the garden is [tex]\( 144 \pi \, \text{ft}^2 \)[/tex].