Solve for [tex]\( x \)[/tex]:

[tex]\[ 9x^2 + 6 = 12x \][/tex]

A. [tex][tex]\( 1 \pm i \sqrt{10} \)[/tex][/tex]

B. [tex]\(\frac{2 \pm i \sqrt{10}}{3} \)[/tex]

C. [tex]\( 1 \pm i \sqrt{2} \)[/tex]

D. [tex]\(\frac{2 \pm i \sqrt{2}}{3} \)[/tex]
PLEASE SHOW ALL WORK AND EXPLAIN

Solve for tex x textex 9x2 6 12x texA textex 1 pm i sqrt10 textexB texfrac2 pm i sqrt103 texC tex 1 pm i sqrt2 texD texfrac2 pm i sqrt23 tex PLEASE SHOW ALL WOR class=


Answer :

Answer:

[tex]\text{D)}\ \ x=\dfrac{2\pm i\sqrt{2}}{3}[/tex]

Step-by-step explanation:

We can solve for x in the quadratic equation:

[tex]9x^2+6=12x[/tex]

by completing the square.

First, get the x-terms on one side.

[tex]9x^2+6=12x[/tex]

↓ subtracting 12x from both sides

[tex]9x^2-12x+6=0[/tex]

↓ subtracting 6 from both sides

[tex]9x^2-12x=-6[/tex]

Next, we can divide both sides by 9 to get the x-squared term's coefficient to be 1:

[tex]\dfrac{9x^2-12x}{9}=\dfrac{-6}{9}[/tex]

[tex]x^2-\dfrac{4}{3}x = -\dfrac{2}{3}[/tex]

Then, we can add half the x-term's coefficient, squared, to both sides:

[tex]x^2-\dfrac{4}{3}x+\left(\dfrac{-4/2}{3}\right)^{\!\!2} = -\dfrac{2}{3} + \left(\dfrac{-4/2}{3}\right)^{\!\!2}[/tex]

[tex]x^2-\dfrac{4}{3}x+\left(\dfrac{-2}{3}\right)^{\!\!2} = -\dfrac{2}{3} + \left(\dfrac{-2}{3}\right)^{\!\!2}[/tex]

[tex]x^2-\dfrac{4}{3}x+\dfrac{4}{9} = -\dfrac{2}{3} + \dfrac{4}{9}[/tex]

[tex]x^2-\dfrac{4}{3}x+\dfrac{4}{9} = -\dfrac{2}{9}[/tex]

This makes it so we can factor the left side as a perfect square:

[tex]\left(x-\dfrac{4/2}{3}\right)^{\!\!2} = -\dfrac{2}{9}[/tex]

[tex]\left(x-\dfrac{2}{3}\right)^{\!\!2} = -\dfrac{2}{9}[/tex]

Finally, we can solve for x by taking the square root of both sides:

[tex]\sqrt{\left(x-\dfrac{2}{3}\right)^{\!\!2}} = \sqrt{-\dfrac{2}{9}}[/tex]

[tex]x-\dfrac{2}{3} =\pm\dfrac{\sqrt{-2}}{3}[/tex]

↓ taking the square root of -1 ... [tex]\sqrt{-1}=i[/tex]

[tex]x-\dfrac{2}{3} = \pm\dfrac{i\sqrt{2}}{3}[/tex]

↓ adding 2/3 to both sides

[tex]\boxed{x=\dfrac{2\pm i\sqrt{2}}{3}}[/tex]

We can identify this as option D.