Drag each tile to the correct box.

Simplify each expression, and then arrange them in increasing order based on the coefficient of [tex]$n^2$[/tex].

[tex]
\begin{array}{l}
-5\left(n^3 - n^2 - 1\right) + n\left(n^2 - n\right) \\
\left(n^2 - 1\right)(n + 2) - n^2(n - 3)
\end{array}
[/tex]

[tex]
\begin{array}{c}
n^2(n - 4) + 5n^3 - 6 \\
2n\left(n^2 - 2n - 1\right) + 3n^2
\end{array}
[/tex]



Answer :

Sure, let’s solve and simplify each expression step-by-step, and then arrange them based on the coefficient of [tex]\(n^2\)[/tex].

### Expression 1
[tex]\[ -5(n^3 - n^2 - 1) + n(n^2 - n) \][/tex]

First, expand the terms:
[tex]\[ -5n^3 + 5n^2 + 5 + n^3 - n^2 \][/tex]

Combine like terms:
[tex]\[ (-5n^3 + n^3) + (5n^2 - n^2) + 5 = -4n^3 + 4n^2 + 5 \][/tex]

### Expression 2
[tex]\[ (n^2 - 1)(n + 2) - n^2(n - 3) \][/tex]

Expand each part:
[tex]\[ (n^2 \cdot n + n^2 \cdot 2 - 1 \cdot n - 1 \cdot 2) - (n^2 \cdot n - n^2 \cdot 3) \][/tex]
[tex]\[ (n^3 + 2n^2 - n - 2) - (n^3 - 3n^2) \][/tex]

Combine the terms:
[tex]\[ (n^3 + 2n^2 - n - 2 - n^3 + 3n^2) = 5n^2 - n - 2 \][/tex]

### Expression 3
[tex]\[ n^2(n - 4) + 5n^3 - 6 \][/tex]

Expand and combine like terms:
[tex]\[ n^3 - 4n^2 + 5n^3 - 6 \][/tex]

Combine like terms:
[tex]\[ (1n^3 + 5n^3) - 4n^2 - 6 = 6n^3 - 4n^2 - 6 \][/tex]

### Expression 4
[tex]\[ 2n(n^2 - 2n - 1) + 3n^2 \][/tex]

Expand and combine like terms:
[tex]\[ 2n^3 - 4n^2 - 2n + 3n^2 \][/tex]

Combine like terms:
[tex]\[ 2n^3 - (4n^2 - 3n^2) - 2n = 2n^3 - n^2 - 2n \][/tex]

### Extracting Coefficients of [tex]\(n^2\)[/tex]:

1. [tex]\( -4n^3 + 4n^2 + 5 \)[/tex] : Coefficient of [tex]\(n^2\)[/tex] is [tex]\(4\)[/tex]
2. [tex]\( 5n^2 - n - 2 \)[/tex] : Coefficient of [tex]\(n^2\)[/tex] is [tex]\(5\)[/tex]
3. [tex]\( 6n^3 - 4n^2 - 6 \)[/tex] : Coefficient of [tex]\(n^2\)[/tex] is [tex]\(-4\)[/tex]
4. [tex]\( 2n^3 - n^2 - 2n \)[/tex] : Coefficient of [tex]\(n^2\)[/tex] is [tex]\(-1\)[/tex]

### Arranging Based on Coefficients of [tex]\(n^2\)[/tex] (Increasing Order):

1. [tex]\( 6n^3 - 4n^2 - 6 \)[/tex] : Coefficient of [tex]\(n^2 = -4\)[/tex]
2. [tex]\( 2n^3 - n^2 - 2n \)[/tex] : Coefficient of [tex]\(n^2 = -1\)[/tex]
3. [tex]\( -4n^3 + 4n^2 + 5 \)[/tex] : Coefficient of [tex]\(n^2 = 4\)[/tex]
4. [tex]\( 5n^2 - n - 2 \)[/tex] : Coefficient of [tex]\(n^2 = 5\)[/tex]

### Final Answer:
Arrange these expressions from the lowest to the highest coefficient of [tex]\(n^2\)[/tex]:

[tex]\[ \begin{array}{ll} 1. & 6n^3 - 4n^2 - 6\\ 2. & 2n^3 - n^2 - 2n\\ 3. & -4n^3 + 4n^2 + 5\\ 4. & 5n^2 - n - 2 \end{array} \][/tex]