The equation for the pH of a substance is [tex]pH =-\log \left[ H ^{+}\right][/tex], where [tex]H^+[/tex] is the concentration of hydrogen ions.

What is the approximate pH of a solution whose hydrogen ion concentration is [tex]2 \times 10^{-9}[/tex]?

A. 1.0
B. 2.9
C. 8.7
D. 9.3



Answer :

To determine the pH of a solution given its hydrogen ion concentration, you can use the formula:

[tex]\[ \text{pH} = -\log_{10} [H^+] \][/tex]

where [tex]\([H^+]\)[/tex] represents the concentration of hydrogen ions in the solution.

Given the hydrogen ion concentration of the solution is [tex]\(2 \times 10^{-9}\)[/tex]:

[tex]\[ [H^+] = 2 \times 10^{-9} \text{ moles per liter} \][/tex]

Now, let's calculate the pH:

1. Substitute the given hydrogen ion concentration into the pH formula:

[tex]\[ \text{pH} = -\log_{10} (2 \times 10^{-9}) \][/tex]

2. Use the properties of logarithms to separate the multiplication inside the logarithm:

[tex]\[ \text{pH} = -(\log_{10} 2 + \log_{10} 10^{-9}) \][/tex]

3. Evaluate the two logarithmic components:

[tex]\[ \log_{10} 10^{-9} = -9 \][/tex]

[tex]\[ \log_{10} 2 \approx 0.3010 \][/tex] (This is a standard logarithm value)

4. Substitute these values back into the equation:

[tex]\[ \text{pH} = - (\log_{10} 2 - 9) \][/tex]

[tex]\[ \text{pH} = - (0.3010 - 9) \][/tex]

[tex]\[ \text{pH} = -0.3010 + 9 \][/tex]

[tex]\[ \text{pH} = 8.699 \][/tex]

Thus, the calculated pH of the solution is approximately [tex]\(8.699\)[/tex].

When compared to the given choices:
1. 1.0
2. 2.9
3. 8.7
4. 9.3

The closest value to 8.699 is 8.7.

Therefore, the approximate pH of the solution is [tex]\(8.7\)[/tex].