Drag each tile to the correct box.

Simplify each expression, and then arrange them in increasing order based on the coefficient of [tex]$\pi^2$[/tex].

[tex]\[ \begin{array}{c}
-5\left(n^3 - n^2 - 1\right) + n\left(n^2 - n\right) \\
\left(n^2 - 1\right)(n + 2) - n^2(n - 3) \\
n^2(n - 4) + 5n^3 - 6 \\
2n\left(n^2 - 2n - 1\right) + 3n^2
\end{array} \][/tex]



Answer :

Let's simplify each expression one by one and determine their coefficients for [tex]\( n^2 \)[/tex]. Finally, we will arrange the simplified expressions in increasing order based on the coefficients of [tex]\( n^2 \)[/tex].

1. Simplify:
[tex]\[ -5(n^3 - n^2 - 1) + n(n^2 - n) \][/tex]

[tex]\[ = -5n^3 + 5n^2 + 5 + n^3 - n^2 \][/tex]
[tex]\[ = -4n^3 + 4n^2 + 5 \][/tex]

The coefficient of [tex]\( n^2 \)[/tex] is 4.

2. Simplify:
[tex]\[ (n^2 - 1)(n + 2) - n^2(n - 3) \][/tex]

[tex]\[ = n^3 + 2n^2 - n - 2 - n^3 + 3n^2 \][/tex]
[tex]\[ = 5n^2 - n - 2 \][/tex]

The coefficient of [tex]\( n^2 \)[/tex] is 5.

3. Simplify:
[tex]\[ n^2(n - 4) + 5n^3 - 6 \][/tex]

[tex]\[ = n^3 - 4n^2 + 5n^3 - 6 \][/tex]
[tex]\[ = 6n^3 - 4n^2 - 6 \][/tex]

The coefficient of [tex]\( n^2 \)[/tex] is -4.

4. Simplify:
[tex]\[ 2n(n^2 - 2n - 1) + 3n^2 \][/tex]

[tex]\[ = 2n^3 - 4n^2 - 2n + 3n^2 \][/tex]
[tex]\[ = 2n^3 - n^2 - 2n \][/tex]

The coefficient of [tex]\( n^2 \)[/tex] is -1.

Now, let's arrange the simplified expressions in increasing order based on the coefficient of [tex]\( n^2 \)[/tex]:

1. [tex]\( 6n^3 - 4n^2 - 6 \)[/tex] [tex]\(\quad (\text{coefficient of } n^2 \text{ is } -4)\)[/tex]
2. [tex]\( 2n^3 - n^2 - 2n \)[/tex] [tex]\(\quad (\text{coefficient of } n^2 \text{ is } -1)\)[/tex]
3. [tex]\( -4n^3 + 4n^2 + 5 \)[/tex] [tex]\(\quad (\text{coefficient of } n^2 \text{ is } 4)\)[/tex]
4. [tex]\( 5n^2 - n - 2 \)[/tex] [tex]\(\quad (\text{coefficient of } n^2 \text{ is } 5)\)[/tex]

Thus, the expressions in increasing order based on the coefficient of [tex]\( n^2 \)[/tex] are:

[tex]\[ 6n^3 - 4n^2 - 6, \quad 2n^3 - n^2 - 2n, \quad -4n^3 + 4n^2 + 5, \quad 5n^2 - n - 2 \][/tex]