Solve the compound inequality [tex]6b \ \textless \ 42[/tex] or [tex]4b + 12 \ \textgreater \ 8[/tex].

A. [tex]b \ \textless \ 6[/tex] or [tex]b \ \textgreater \ 5[/tex]
B. [tex]b \ \textless \ 7[/tex] or [tex]b \ \textgreater \ -1[/tex]
C. [tex]b \ \textless \ 7[/tex] or [tex]b \ \textgreater \ 1[/tex]
D. [tex]b \ \textgreater \ 6[/tex] or [tex]b \ \textless \ 5[/tex]



Answer :

Let's solve the given compound inequality step-by-step.

### Step 1: Solve the first inequality [tex]\(6b < 42\)[/tex].

To isolate [tex]\(b\)[/tex], divide both sides of the inequality by 6:

[tex]\[ \frac{6b}{6} < \frac{42}{6} \][/tex]

[tex]\[ b < 7 \][/tex]

### Step 2: Solve the second inequality [tex]\(4b + 12 > 8\)[/tex].

First, subtract 12 from both sides to isolate the term with [tex]\(b\)[/tex]:

[tex]\[ 4b + 12 - 12 > 8 - 12 \][/tex]

[tex]\[ 4b > -4 \][/tex]

Next, divide both sides by 4:

[tex]\[ \frac{4b}{4} > \frac{-4}{4} \][/tex]

[tex]\[ b > -1 \][/tex]

### Step 3: Combine the inequalities.

The compound inequality is:

[tex]\[ b < 7 \quad \text{or} \quad b > -1 \][/tex]

Therefore, the solution to the compound inequality [tex]\(6b < 42\)[/tex] or [tex]\(4b + 12 > 8\)[/tex] is:

[tex]\[ b < 7 \quad \text{or} \quad b > -1 \][/tex]

### Conclusion:

Among the provided options, the correct one is:
[tex]\[ b < 7 \quad \text{or} \quad b > -1 \][/tex]

So, the correct choice is:
[tex]\[ b < 7 \quad \text{or} \quad b > -1 \][/tex]