Answer :
To simplify the expression [tex]\(\left( x^5 - 2x^3 + x^2 - 7\right) - \left(2x^5 + 7x^4 - 4x^3 + 2\right)\)[/tex], follow these steps:
1. Distribute the negative sign through the second polynomial:
[tex]\[ \left( x^5 - 2x^3 + x^2 - 7 \right) - \left( 2x^5 + 7x^4 - 4x^3 + 2 \right) \][/tex]
[tex]\[ = x^5 - 2x^3 + x^2 - 7 - 2x^5 - 7x^4 + 4x^3 - 2 \][/tex]
2. Combine like terms:
- For [tex]\(x^5\)[/tex]:
[tex]\[ x^5 - 2x^5 = -x^5 \][/tex]
- For [tex]\(x^4\)[/tex]:
[tex]\[ -7x^4 \][/tex]
- For [tex]\(x^3\)[/tex]:
[tex]\[ -2x^3 + 4x^3 = 2x^3 \][/tex]
- For [tex]\(x^2\)[/tex]:
[tex]\[ x^2 \][/tex]
- Constant terms:
[tex]\[ -7 - 2 = -9 \][/tex]
3. Combine all the simplified terms:
[tex]\[ -x^5 - 7x^4 + 2x^3 + x^2 - 9 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -x^5 - 7x^4 + 2x^3 + x^2 - 9 \][/tex]
So, the correct answer is:
[tex]\[ -x^5 - 7x^4 + 2x^3 + x^2 - 9 \][/tex]
1. Distribute the negative sign through the second polynomial:
[tex]\[ \left( x^5 - 2x^3 + x^2 - 7 \right) - \left( 2x^5 + 7x^4 - 4x^3 + 2 \right) \][/tex]
[tex]\[ = x^5 - 2x^3 + x^2 - 7 - 2x^5 - 7x^4 + 4x^3 - 2 \][/tex]
2. Combine like terms:
- For [tex]\(x^5\)[/tex]:
[tex]\[ x^5 - 2x^5 = -x^5 \][/tex]
- For [tex]\(x^4\)[/tex]:
[tex]\[ -7x^4 \][/tex]
- For [tex]\(x^3\)[/tex]:
[tex]\[ -2x^3 + 4x^3 = 2x^3 \][/tex]
- For [tex]\(x^2\)[/tex]:
[tex]\[ x^2 \][/tex]
- Constant terms:
[tex]\[ -7 - 2 = -9 \][/tex]
3. Combine all the simplified terms:
[tex]\[ -x^5 - 7x^4 + 2x^3 + x^2 - 9 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -x^5 - 7x^4 + 2x^3 + x^2 - 9 \][/tex]
So, the correct answer is:
[tex]\[ -x^5 - 7x^4 + 2x^3 + x^2 - 9 \][/tex]