Look at the sets of ordered pairs.

\begin{tabular}{|l|l|}
\hline
Set 1 & [tex]$\{(3,2),(2,6),(1,7),(-1,-2),(-3,-5)\}$[/tex] \\
\hline
Set 2 & [tex]$\{(1,5),(2,-5),(-5,6),(-2,1),(0,8)\}$[/tex] \\
\hline
Set 3 & [tex]$\{(3,-1),(4,0),(-2,4),(-3,6),(5,-2)\}$[/tex] \\
\hline
Set 4 & [tex]$\{(3,6),(-2,-4),(5,-8),(-3,1),(2,-4)\}$[/tex] \\
\hline
\end{tabular}

Which set would not be a function if the ordered pair [tex]$(4,2)$[/tex] was added into the sets?

A. Set 1
B. Set 2
C. Set 3
D. Set 4



Answer :

To determine which set would not be a function if we add the ordered pair [tex]\((4,2)\)[/tex] to it, we need to understand that a function must have unique [tex]\(x\)[/tex]-values for each [tex]\(y\)[/tex]-value. That means no [tex]\(x\)[/tex]-value should repeat within each set of ordered pairs.

Let's check each set:

Set 1: [tex]\(\{(3,2),(2,6),(1,7),(-1,-2),(-3,-5)\}\)[/tex]
- Current [tex]\(x\)[/tex]-values: [tex]\(3, 2, 1, -1, -3\)[/tex]
- Adding [tex]\( (4,2) \)[/tex] introduces [tex]\(x = 4\)[/tex], which is not already in the set.
- It remains a function.

Set 2: [tex]\(\{(1,5),(2,-5),(-5,6),(-2,1),(0,8)\}\)[/tex]
- Current [tex]\(x\)[/tex]-values: [tex]\(1, 2, -5, -2, 0\)[/tex]
- Adding [tex]\( (4,2) \)[/tex] introduces [tex]\(x = 4\)[/tex], which is not already in the set.
- It remains a function.

Set 3: [tex]\(\{(3,-1),(4,0),(-2,4),(-3,6),(5,-2)\}\)[/tex]
- Current [tex]\(x\)[/tex]-values: [tex]\(3, 4, -2, -3, 5\)[/tex]
- Adding [tex]\( (4,2) \)[/tex] introduces [tex]\(x = 4\)[/tex], which already exists in the set.
- It would no longer be a function because of the repeated [tex]\(x\)[/tex]-value.

Set 4: [tex]\(\{(3,6),(-2,-4),(5,-8),(-3,1),(2,-4)\}\)[/tex]
- Current [tex]\(x\)[/tex]-values: [tex]\(3, -2, 5, -3, 2\)[/tex]
- Adding [tex]\( (4,2) \)[/tex] introduces [tex]\(x = 4\)[/tex], which is not already in the set.
- It remains a function.

Thus, the set that would not be a function if the ordered pair [tex]\((4,2)\)[/tex] is added is:

Set 3

The correct answer is:
C Set 3