Question #21

What is the slope of the table shown below?

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
1 & -3 \\
\hline
0 & -1 \\
\hline
1 & 1 \\
\hline
8 & 3 \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{array}{l:l}
\text{A} & 2 \\
\text{B} & -2 \\
\text{C} & \frac{1}{2} \\
\text{D} & -\frac{1}{2} \\
\end{array}
\][/tex]



Answer :

To find the slope between the points [tex]\((1, -3)\)[/tex] and [tex]\((0, -1)\)[/tex] from the given set of points, we use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Given:
- Point 1: [tex]\((1, -3)\)[/tex]
- Point 2: [tex]\((0, -1)\)[/tex]

Now, let's denote [tex]\((x_1, y_1) = (1, -3)\)[/tex] and [tex]\((x_2, y_2) = (0, -1)\)[/tex].

Substitute these values into the slope formula:

[tex]\[ \text{slope} = \frac{-1 - (-3)}{0 - 1} \][/tex]

First, simplify the numerator:

[tex]\[ -1 - (-3) = -1 + 3 = 2 \][/tex]

Next, simplify the denominator:

[tex]\[ 0 - 1 = -1 \][/tex]

Now, divide the numerator by the denominator:

[tex]\[ \text{slope} = \frac{2}{-1} = -2 \][/tex]

Therefore, the slope between the points [tex]\((1, -3)\)[/tex] and [tex]\((0, -1)\)[/tex] is [tex]\(-2\)[/tex]. Thus, the correct answer is:

[tex]\[ \boxed{-2} \][/tex]