The table represents a function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-4 & -2 \\
\hline
-1 & 5 \\
\hline
3 & 4 \\
\hline
5 & -8 \\
\hline
\end{tabular}

What is [tex]$f(5)$[/tex]?

A. [tex]$-8$[/tex]
B. [tex]$-1$[/tex]
C. 1
D. 8



Answer :

To find [tex]\( f(5) \)[/tex] in the given function table, we need to locate the row in the table where [tex]\( x = 5 \)[/tex].

Here is the given function table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -4 & -2 \\ \hline -1 & 5 \\ \hline 3 & 4 \\ \hline 5 & -8 \\ \hline \end{tabular} \][/tex]

Let's follow these steps:

1. Look for the row where [tex]\( x = 5 \)[/tex].
2. Identify the corresponding value for [tex]\( f(x) \)[/tex] in that row.

Going through the table:

- When [tex]\( x = -4 \)[/tex], [tex]\( f(x) = -2 \)[/tex].
- When [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 5 \)[/tex].
- When [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 4 \)[/tex].
- When [tex]\( x = 5 \)[/tex], [tex]\( f(x) = -8 \)[/tex].

So, the corresponding value for [tex]\( f(5) \)[/tex] is [tex]\(-8\)[/tex].

Therefore, [tex]\( f(5) = -8 \)[/tex].

The correct answer is:
[tex]\[ -8 \][/tex]