To find [tex]\( f(5) \)[/tex] in the given function table, we need to locate the row in the table where [tex]\( x = 5 \)[/tex].
Here is the given function table:
[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-4 & -2 \\
\hline
-1 & 5 \\
\hline
3 & 4 \\
\hline
5 & -8 \\
\hline
\end{tabular}
\][/tex]
Let's follow these steps:
1. Look for the row where [tex]\( x = 5 \)[/tex].
2. Identify the corresponding value for [tex]\( f(x) \)[/tex] in that row.
Going through the table:
- When [tex]\( x = -4 \)[/tex], [tex]\( f(x) = -2 \)[/tex].
- When [tex]\( x = -1 \)[/tex], [tex]\( f(x) = 5 \)[/tex].
- When [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 4 \)[/tex].
- When [tex]\( x = 5 \)[/tex], [tex]\( f(x) = -8 \)[/tex].
So, the corresponding value for [tex]\( f(5) \)[/tex] is [tex]\(-8\)[/tex].
Therefore, [tex]\( f(5) = -8 \)[/tex].
The correct answer is:
[tex]\[ -8 \][/tex]