Use trigonometric identities to transform the left side:

[tex]\[
\begin{aligned}
\frac{\tan \beta + \cot \beta}{\tan \beta} & = \frac{\tan \beta}{\tan \beta} + \frac{\cot \beta}{\tan \beta} \\
& = 1 + \square \\
& = \csc^2 \beta
\end{aligned}
\][/tex]



Answer :

Certainly! Let's transform the left side of the given equation step by step using trigonometric identities.

We start with the given equation:

[tex]\[ \frac{\tan \beta + \cot \beta}{\tan \beta} \][/tex]

### Step 1: Separate the terms
We can split the numerator into two separate fractions:

[tex]\[ \frac{\tan \beta}{\tan \beta} + \frac{\cot \beta}{\tan \beta} \][/tex]

### Step 2: Simplify each term
Next, we simplify each fraction individually. For the first term:

[tex]\[ \frac{\tan \beta}{\tan \beta} = 1 \][/tex]

For the second term, note that cotangent [tex]\( \cot \beta \)[/tex] is the reciprocal of tangent [tex]\( \tan \beta \)[/tex]:

[tex]\[ \frac{\cot \beta}{\tan \beta} = \frac{1/\tan \beta}{\tan \beta} = \frac{1}{\tan^2 \beta} \][/tex]

So, combining these results, we have:

[tex]\[ 1 + \frac{1}{\tan^2 \beta} \][/tex]

### Step 3: Use trigonometric identities
We recognize that the term [tex]\( \frac{1}{\tan^2 \beta} \)[/tex] can be rewritten using a known trigonometric identity involving the cosecant function. The identity states:

[tex]\[ 1 + \cot^2 \beta = \csc^2 \beta \][/tex]

Since [tex]\( \cot \beta = \frac{1}{\tan \beta} \)[/tex], we have:

[tex]\[ \cot^2 \beta = \left(\frac{1}{\tan \beta}\right)^2 = \frac{1}{\tan^2 \beta} \][/tex]

Thus, our expression:

[tex]\[ 1 + \frac{1}{\tan^2 \beta} = 1 + \cot^2 \beta = \csc^2 \beta \][/tex]

### Conclusion:
By applying the trigonometric identity, we have:

[tex]\[ \frac{\tan \beta + \cot \beta}{\tan \beta} = 1 + \frac{1}{\tan^2 \beta} = \csc^2 \beta \][/tex]

Therefore, the completely simplified form of the expression on the left side is:

[tex]\[ \csc^2 \beta \][/tex]