Solve [tex]$|-4x + 6| \geq 2$[/tex].

A. [tex]x \geq -1[/tex] or [tex]x \leq -2[/tex]
B. [tex]1 \leq x \leq 2[/tex]
C. [tex]x \leq 1[/tex] or [tex]x \geq 2[/tex]
D. There are no solutions



Answer :

To solve the inequality [tex]\(|-4x + 6| \geq 2\)[/tex], we need to consider the properties of absolute values and analyze the two possible cases for the inequality.

The inequality [tex]\(|A| \geq B\)[/tex] implies:
1. [tex]\(A \geq B\)[/tex], or
2. [tex]\(A \leq -B\)[/tex].

Let's apply this to our problem:

[tex]\[ |-4x + 6| \geq 2 \][/tex]

This gives us two cases to consider:

### Case 1: [tex]\(-4x + 6 \geq 2\)[/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ -4x + 6 \geq 2 \][/tex]
Subtract 6 from both sides:
[tex]\[ -4x \geq 2 - 6 \][/tex]
[tex]\[ -4x \geq -4 \][/tex]
Divide by -4 (remember to reverse the inequality sign when dividing by a negative number):
[tex]\[ x \leq 1 \][/tex]

### Case 2: [tex]\(-4x + 6 \leq -2\)[/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ -4x + 6 \leq -2 \][/tex]
Subtract 6 from both sides:
[tex]\[ -4x \leq -2 - 6 \][/tex]
[tex]\[ -4x \leq -8 \][/tex]
Divide by -4 (again, reverse the inequality sign when dividing by a negative number):
[tex]\[ x \geq 2 \][/tex]

Now we combine the solutions from Case 1 and Case 2. We have:

1. [tex]\(x \leq 1\)[/tex]
2. [tex]\(x \geq 2\)[/tex]

Thus, the solution to the inequality [tex]\(|-4x + 6| \geq 2\)[/tex] is:

[tex]\[ x \leq 1 \quad \text{or} \quad x \geq 2 \][/tex]

Looking at the provided choices:
1. [tex]\(x \geq -1\)[/tex] or [tex]\(x \leq -2\)[/tex]
2. [tex]\(1 \leq x \leq 2\)[/tex]
3. [tex]\(x \leq 1\)[/tex] or [tex]\(x \geq 2\)[/tex]
4. There are no solutions

The correct answer is:

[tex]\[ \boxed{x \leq 1 \text{ or } x \geq 2} \][/tex]

Which corresponds to the third choice. Thus, the correct answer is:

[tex]\[ \boxed{3} \][/tex]