Given:
[tex]\[
\frac{2}{3} x + c y = 2
\][/tex]

If the slope of the equation shown above is 6, what is the value of [tex]\( c \)[/tex]?

A. [tex]\(-4\)[/tex]

B. [tex]\(-\frac{1}{9}\)[/tex]

C. [tex]\(\frac{1}{3}\)[/tex]

D. 4



Answer :

Given the equation:
[tex]\[ \frac{2}{3} x + c y = 2 \][/tex]
we need to determine the value of [tex]\( c \)[/tex] when the slope of this equation is 6.

First, let's rewrite the equation in slope-intercept form [tex]\( y = mx + b \)[/tex]. To do this, we need to solve for [tex]\( y \)[/tex]:

[tex]\[ \frac{2}{3} x + c y = 2 \][/tex]

Subtract [tex]\(\frac{2}{3} x\)[/tex] from both sides to isolate the term involving [tex]\( y \)[/tex]:

[tex]\[ c y = -\frac{2}{3} x + 2 \][/tex]

Next, divide every term by [tex]\( c \)[/tex] to solve for [tex]\( y \)[/tex]:

[tex]\[ y = -\frac{2}{3c} x + \frac{2}{c} \][/tex]

The slope-intercept form of the equation is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. From the equation above, we can see that the coefficient of [tex]\( x \)[/tex] is [tex]\( -\frac{2}{3c} \)[/tex]. Given that the slope [tex]\( m \)[/tex] is 6, we set up the equation:

[tex]\[ -\frac{2}{3c} = 6 \][/tex]

Now, solve for [tex]\( c \)[/tex]:

First, multiply both sides of the equation by [tex]\( -1 \)[/tex]:

[tex]\[ \frac{2}{3c} = -6 \][/tex]

Next, solve for [tex]\( c \)[/tex]:

[tex]\[ 2 = -18c \][/tex]

[tex]\[ c = \frac{-2}{18} \][/tex]

[tex]\[ c = -\frac{1}{9} \][/tex]

So, the value of [tex]\( c \)[/tex] is:

[tex]\[ \boxed{-\frac{1}{9}} \][/tex]