The one-to-one functions [tex]g[/tex] and [tex]h[/tex] are defined as follows:
[tex]\[
\begin{array}{l}
g = \{(-5, -1), (0, 6), (2, -9), (5, 2)\} \\
h(x) = 2x - 3
\end{array}
\][/tex]

Find the following:



Answer :

Certainly! Let's solve the given problem step-by-step.

We are given:
1. A set of ordered pairs representing the values of the function [tex]\( g \)[/tex]:
[tex]\[ g = \{(-5, -1), (0, 6), (2, -9), (5, 2)\} \][/tex]
2. A linear function [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = 2x - 3 \][/tex]

We need to find the following:

### 1. The value of [tex]\( g(2) \)[/tex]

To find [tex]\( g(2) \)[/tex], we look for the ordered pair in the set [tex]\( g \)[/tex] where the first element is [tex]\( 2 \)[/tex]. From the given set [tex]\( g \)[/tex]:
[tex]\[ g = \{(-5, -1), (0, 6), (2, -9), (5, 2)\} \][/tex]

We locate the pair where the first element is [tex]\( 2 \)[/tex]:
[tex]\[ (2, -9) \][/tex]

Thus, the value of [tex]\( g(2) \)[/tex] is:
[tex]\[ g(2) = -9 \][/tex]

### 2. The value of [tex]\( h(4) \)[/tex]

Next, we need to find [tex]\( h(4) \)[/tex] using the function [tex]\( h(x) = 2x - 3 \)[/tex].

Substitute [tex]\( x = 4 \)[/tex] into the function:
[tex]\[ h(4) = 2(4) - 3 = 8 - 3 = 5 \][/tex]

Thus, the value of [tex]\( h(4) \)[/tex] is:
[tex]\[ h(4) = 5 \][/tex]

### Summary

Putting it all together, we have:
- The value of [tex]\( g(2) \)[/tex] is [tex]\( -9 \)[/tex].
- The value of [tex]\( h(4) \)[/tex] is [tex]\( 5 \)[/tex].

Therefore, the final results are:
[tex]\[ g(2) = -9 \quad \text{and} \quad h(4) = 5 \][/tex]