Find both the [tex]$x$[/tex]-intercept and the [tex]$y$[/tex]-intercept of the line given by this equation.

[tex]\[ 6.2x + 8.4y + 7.2 = 0 \][/tex]

Round your answers to two decimal places.

(a) [tex]$x$[/tex]-intercept: [tex]$\square$[/tex]

(b) [tex]$y$[/tex]-intercept: [tex]$\square$[/tex]



Answer :

To find the intercepts of the line given by the equation [tex]\(6.2x + 8.4y + 7.2 = 0\)[/tex], we need to determine where the line crosses the [tex]\(x\)[/tex]-axis and [tex]\(y\)[/tex]-axis.

### Finding the [tex]\(x\)[/tex]-Intercept

The [tex]\(x\)[/tex]-intercept occurs where the line crosses the [tex]\(x\)[/tex]-axis. At this point, the value of [tex]\(y\)[/tex] is zero:

1. Substitute [tex]\(y = 0\)[/tex] into the equation:
[tex]\[ 6.2x + 8.4(0) + 7.2 = 0 \][/tex]

2. Simplify the equation:
[tex]\[ 6.2x + 7.2 = 0 \][/tex]

3. Solve for [tex]\(x\)[/tex]:
[tex]\[ 6.2x = -7.2 \][/tex]
[tex]\[ x = \frac{-7.2}{6.2} \][/tex]

4. Perform the division and round to two decimal places:
[tex]\[ x \approx -1.16 \][/tex]

The [tex]\(x\)[/tex]-intercept is [tex]\(-1.16\)[/tex].

### Finding the [tex]\(y\)[/tex]-Intercept

The [tex]\(y\)[/tex]-intercept occurs where the line crosses the [tex]\(y\)[/tex]-axis. At this point, the value of [tex]\(x\)[/tex] is zero:

1. Substitute [tex]\(x = 0\)[/tex] into the equation:
[tex]\[ 6.2(0) + 8.4y + 7.2 = 0 \][/tex]

2. Simplify the equation:
[tex]\[ 8.4y + 7.2 = 0 \][/tex]

3. Solve for [tex]\(y\)[/tex]:
[tex]\[ 8.4y = -7.2 \][/tex]
[tex]\[ y = \frac{-7.2}{8.4} \][/tex]

4. Perform the division and round to two decimal places:
[tex]\[ y \approx -0.86 \][/tex]

The [tex]\(y\)[/tex]-intercept is [tex]\(-0.86\)[/tex].

### Summary
(a) [tex]\(x\)[/tex]-intercept: [tex]\(-1.16\)[/tex]

(b) [tex]\(y\)[/tex]-intercept: [tex]\(-0.86\)[/tex]