Question 1 (Multiple Choice Worth 2 points)
(Laws of Exponents with Integer Exponents LC)

Simplify [tex]\left(4^4\right)^{-1}[/tex].

A. [tex]4^3[/tex]

B. [tex]-4^4[/tex]

C. [tex]\frac{1}{4^4}[/tex]

D. [tex]\frac{1}{4^{-4}}[/tex]



Answer :

To simplify the expression [tex]\(\left(4^4\right)^{-1}\)[/tex], follow these steps:

1. Apply the Power of a Power property: This property states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Here, we have [tex]\(a = 4\)[/tex], [tex]\(m = 4\)[/tex], and [tex]\(n = -1\)[/tex].

[tex]\[ \left(4^4\right)^{-1} = 4^{4 \cdot (-1)} = 4^{-4} \][/tex]

2. Convert to Reciprocal Form: An expression with a negative exponent can be written as the reciprocal of the positive exponent. This means:

[tex]\[ 4^{-4} = \frac{1}{4^4} \][/tex]

Therefore, the simplified form of [tex]\(\left(4^4\right)^{-1}\)[/tex] is [tex]\(\frac{1}{4^4}\)[/tex].

Among the given choices:
- [tex]\(4^3\)[/tex]
- [tex]\(-4^4\)[/tex]
- [tex]\(\frac{1}{4^4}\)[/tex]
- [tex]\(\frac{1}{4^{-4}}\)[/tex]

The correct answer is:
[tex]\(\frac{1}{4^4}\)[/tex]