A simple random sample of size [tex]n[/tex] is drawn from a normally distributed population. The mean of the sample is denoted as [tex]\(\overline{x}\)[/tex], and the standard deviation is [tex]S[/tex]. What is the [tex]99\%[/tex] confidence interval for the population mean? Use the table below to help you answer the question.

\begin{tabular}{|c|c|c|c|}
\hline
Confidence Level & [tex]90\%[/tex] & [tex]95\%[/tex] & [tex]99\%[/tex] \\
\hline
[tex]z^*[/tex]-score & 1.645 & 1.96 & 2.58 \\
\hline
\end{tabular}

[tex]\(\overline{x} \pm \frac{0.90 \times S}{\sqrt{n}}\)[/tex]

[tex]\(\overline{x} \pm \frac{0.99 \times S}{\sqrt{n}}\)[/tex]

[tex]\(\overline{x} \pm \frac{1.645 \times S}{\sqrt{n}}\)[/tex]

[tex]\(\overline{x} \pm \frac{2.58 \times S}{\sqrt{n}}\)[/tex]



Answer :

To find the 99% confidence interval for the population mean, we need to perform the following steps from statistics theory:

1. Identifying the given values:
- The sample mean [tex]\(\overline{x}\)[/tex] (denoted as Overbar)
- The sample standard deviation [tex]\(s\)[/tex] (denoted as S)
- The sample size [tex]\(n\)[/tex]
- The z\*-score for the 99% confidence level from the provided table, which is 2.58

2. Understanding the formula for the confidence interval:
The formula for a confidence interval for the population mean is given by:
[tex]\[ \overline{x} \pm z^* \frac{s}{\sqrt{n}} \][/tex]
where [tex]\(\overline{x}\)[/tex] is the sample mean, [tex]\(z^*\)[/tex] is the z-score corresponding to the desired confidence level, [tex]\(s\)[/tex] is the sample standard deviation, and [tex]\(n\)[/tex] is the sample size.

3. Calculating the margin of error:
The margin of error (ME) can be calculated as:
[tex]\[ \text{ME} = z^* \frac{s}{\sqrt{n}} \][/tex]
For a 99% confidence level, [tex]\(z^* = 2.58\)[/tex]. Therefore, the margin of error is:
[tex]\[ \text{ME} = 2.58 \frac{s}{\sqrt{n}} \][/tex]

4. Finding the confidence interval:
The confidence interval is computed by subtracting and adding the margin of error from/to the sample mean. Therefore, the 99% confidence interval is:
[tex]\[ \left( \overline{x} - 2.58 \frac{s}{\sqrt{n}}, \overline{x} + 2.58 \frac{s}{\sqrt{n}} \right) \][/tex]

Thus, the correct answer is:
[tex]\[ \overline{x} \pm 2.58 \frac{s}{\sqrt{n}} \][/tex]

From the given options, the correct one is:
[tex]\[ \overline{x} \pm \frac{2.58 \times s}{\sqrt{n}} \][/tex]