Which system is equivalent to
[tex]\[ \left\{\begin{array}{l}
5x^2 + 6y^2 = 50 \\
7x^2 + 2y^2 = 10
\end{array}\right. \][/tex]

A.
[tex]\[ \left\{\begin{array}{r}
5x^2 + 6y^2 = 50 \\
-21x^2 - 6y^2 = 10
\end{array}\right. \][/tex]

B.
[tex]\[ \left\{\begin{aligned}
5x^2 + 6y^2 &= 50 \\
-21x^2 - 6y^2 &= 30
\end{aligned}\right. \][/tex]

C.
[tex]\[ \left\{\begin{aligned}
35x^2 + 42y^2 &= 250 \\
-35x^2 - 10y^2 &= -50
\end{aligned}\right. \][/tex]

D.
[tex]\[ \left\{\begin{array}{r}
35x^2 + 42y^2 = 350 \\
-35x^2 - 10y^2 = -50
\end{array}\right. \][/tex]



Answer :

To determine which system of equations is equivalent to the original system:

[tex]\[ \left\{\begin{array}{l} 5 x^2 + 6 y^2 = 50 \\ 7 x^2 + 2 y^2 = 10 \end{array}\right. \][/tex]

we transform the original equations to create systems of equations and compare them with the given options.

First, observe the transformations necessary to achieve certain forms.

Transforming the first equation:

We start with:
[tex]\[ 5x^2 + 6y^2 = 50 \][/tex]

To derive an equivalent equation with [tex]\(35x^2 + 42y^2\)[/tex] on the left side, multiply every term by 7:
[tex]\[ 7 \cdot (5x^2 + 6y^2) = 7 \cdot 50 \][/tex]
[tex]\[ 35x^2 + 42y^2 = 350 \][/tex]

We get:
[tex]\[ 35x^2 + 42y^2 = 350 \][/tex]

Transforming the second equation:

We start with:
[tex]\[ 7x^2 + 2y^2 = 10 \][/tex]

To derive an equivalent equation with [tex]\(-35x^2 - 10y^2\)[/tex] on the left side, multiply every term by -5:
[tex]\[ -5 \cdot (7x^2 + 2y^2) = -5 \cdot 10 \][/tex]
[tex]\[ -35x^2 - 10y^2 = -50 \][/tex]

We get:
[tex]\[ -35x^2 - 10y^2 = -50 \][/tex]

Thus, our transformed system of equations is:
[tex]\[ \left\{\begin{array}{l} 35 x^2 + 42 y^2 = 350 \\ -35 x^2 - 10 y^2 = -50 \end{array}\right. \][/tex]

Now, let's compare this with the given options:

1. [tex]\[ \left\{\begin{array}{r} 5 x^2 + 6 y^2 = 50 \\ -21 x^2 - 6 y^2 = 10 \end{array}\right. \][/tex]
This does not match as it hasn't applied full transformations required.

2. [tex]\[ \left\{\begin{aligned} 5 x^2 + 6 y^2 & =50 \\ -21 x^2 - 6 y^2 & =30 \end{aligned}\right. \][/tex]
This also doesn't match.

3. [tex]\[ \left\{\begin{aligned} 35 x^2 + 42 y^2 & =250 \\ -35 x^2 - 10 y^2 & =-50 \end{aligned}\right. \][/tex]
The equation [tex]\(35x^2 + 42y^2 = 250\)[/tex] does not match; the right side should be 350.

4. [tex]\[ \left\{\begin{array}{r} 35 x^2 + 42 y^2 = 350 \\ -35 x^2 - 10 y^2 = -50 \end{array}\right. \][/tex]
This system matches perfectly.

Hence, the system equivalent to the original is:
[tex]\[ \left\{\begin{array}{r} 35 x^2 + 42 y^2 = 350 \\ -35 x^2 - 10 y^2 = -50 \end{array}\right. \][/tex]