If [tex]$m(x) = x^2 + 3$[/tex] and [tex]$n(x) = 5x + 9$[/tex], which expression is equivalent to [tex][tex]$(m \cdot n)(x)$[/tex][/tex]?

A. [tex]5x^3 + 9x^2 + 15x + 27[/tex]

B. [tex]25x^2 + 90x + 84[/tex]

C. [tex]x^2 + 5x + 12[/tex]

D. [tex]5x^2 + 24[/tex]



Answer :

To find the expression equivalent to [tex]\((m n)(x)\)[/tex] where [tex]\(m(x) = x^2 + 3\)[/tex] and [tex]\(n(x) = 5x + 9\)[/tex], you need to understand that [tex]\((m n)(x)\)[/tex] represents the product of the two functions [tex]\(m(x)\)[/tex] and [tex]\(n(x)\)[/tex]. That means:

[tex]\[ (m n)(x) = m(x) \cdot n(x) \][/tex]

Substitute the expressions for [tex]\(m(x)\)[/tex] and [tex]\(n(x)\)[/tex]:

[tex]\[ m(x) = x^2 + 3 \][/tex]
[tex]\[ n(x) = 5x + 9 \][/tex]

Now, we want to multiply these two expressions:

[tex]\[ (x^2 + 3)(5x + 9) \][/tex]

To multiply these expressions, we'll use the distributive property (also known as the FOIL method for binomials):

[tex]\[ (x^2 + 3)(5x + 9) = x^2 \cdot 5x + x^2 \cdot 9 + 3 \cdot 5x + 3 \cdot 9 \][/tex]

Let's calculate each term step by step:

[tex]\[ x^2 \cdot 5x = 5x^3 \][/tex]
[tex]\[ x^2 \cdot 9 = 9x^2 \][/tex]
[tex]\[ 3 \cdot 5x = 15x \][/tex]
[tex]\[ 3 \cdot 9 = 27 \][/tex]

Now, combine all the terms:

[tex]\[ (m n)(x) = 5x^3 + 9x^2 + 15x + 27 \][/tex]

So, the expression equivalent to [tex]\((m n)(x)\)[/tex] is:

[tex]\[ 5x^3 + 9x^2 + 15x + 27 \][/tex]

Thus, the correct answer is:

[tex]\[ 5x^3 + 9x^2 + 15x + 27 \][/tex]