Which value must be added to the expression [tex]x^2 - 3x[/tex] to make it a perfect-square trinomial?

A. [tex]\frac{3}{2}[/tex]
B. [tex]\frac{9}{4}[/tex]
C. 6
D. 9



Answer :

To determine which value must be added to the expression [tex]\(x^2 - 3x\)[/tex] to make it a perfect-square trinomial, follow these steps:

1. Identify the coefficient of [tex]\(x\)[/tex]:
In the expression [tex]\(x^2 - 3x\)[/tex], the coefficient of [tex]\(x\)[/tex] is [tex]\(-3\)[/tex].

2. Calculate half of the coefficient of [tex]\(x\)[/tex]:
Take the coefficient of [tex]\(x\)[/tex], which is [tex]\(-3\)[/tex], and divide it by 2:
[tex]\[ \frac{-3}{2} = -\frac{3}{2} \][/tex]

3. Square the result:
Square [tex]\(-\frac{3}{2}\)[/tex] to find the value that needs to be added:
[tex]\[ \left( -\frac{3}{2} \right)^2 = \frac{9}{4} \][/tex]

Therefore, the value that must be added to the expression [tex]\(x^2 - 3x\)[/tex] to make it a perfect-square trinomial is [tex]\(\frac{9}{4}\)[/tex].

So, the correct answer is:
[tex]\[ \boxed{\frac{9}{4}} \][/tex]