Find the volume given that

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

where [tex]\( r = 20 \, \text{cm} \)[/tex], [tex]\( h = 3 \, \text{cm} \)[/tex], and [tex]\( \pi = 3.14 \)[/tex].



Answer :

To determine the volume [tex]\( V \)[/tex] of a cone with the given parameters, we start from the formula for the volume of a cone:

[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]

Given:
- The radius [tex]\( r = 20 \)[/tex] cm
- The height [tex]\( h = 3 \)[/tex] cm
- The value of [tex]\( \pi = 3.14 \)[/tex]

We can break down the calculation into the following steps:

1. Square the radius [tex]\( r \)[/tex]:
[tex]\[ r^2 = 20^2 = 400 \][/tex]

2. Multiply the squared radius by the height [tex]\( h \)[/tex]:
[tex]\[ r^2 \times h = 400 \times 3 = 1200 \][/tex]

3. Multiply [tex]\( \pi \)[/tex] by the result from step 2:
[tex]\[ \pi \times 1200 = 3.14 \times 1200 = 3768 \][/tex]

4. Finally, multiply the result by [tex]\(\frac{1}{3}\)[/tex] to get the volume:
[tex]\[ V = \frac{1}{3} \times 3768 = 1256.0 \][/tex]

Therefore, the volume of the cone is:

[tex]\[ V = 1256.0 \text{ cm}^3 \][/tex]