Point [tex]\( M \)[/tex] is the midpoint of line segment [tex]\( AB \)[/tex].

If [tex]\( AM = 18 \)[/tex] and [tex]\( MB = 2x - 5 \)[/tex], find the value of [tex]\( x \)[/tex].

A. 15
B. 11.5
C. 6.5
D. 46



Answer :

Let's solve the given problem step by step.

Given that [tex]\( M \)[/tex] is the midpoint of line segment [tex]\( AB \)[/tex], we know that [tex]\( AM = MB \)[/tex].

We are provided with the following information:
1. [tex]\( AM = 18 \)[/tex]
2. [tex]\( MB = 2x - 5 \)[/tex]

Since [tex]\( AM \)[/tex] and [tex]\( MB \)[/tex] are equal (because [tex]\( M \)[/tex] is the midpoint), we can set up the equation:
[tex]\[ AM = MB \][/tex]

Substituting the given values, we get:
[tex]\[ 18 = 2x - 5 \][/tex]

Now, we solve for [tex]\( x \)[/tex].

1. Add 5 to both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 18 + 5 = 2x - 5 + 5 \][/tex]
[tex]\[ 23 = 2x \][/tex]

2. Divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{23}{2} \][/tex]
[tex]\[ x = 11.5 \][/tex]

So the value of [tex]\( x \)[/tex] is 11.5.

To determine the correct multiple-choice option, we compare our answer to the choices given:
- a. 15
- b. 11.5
- c. 6.5
- d. 46

Our solution corresponds to option b. Therefore, the correct answer is [tex]\( \boxed{b} \)[/tex].