Let [tex]$y = 8x^3 + \frac{6x^4}{x^{-6}} - 7x^5 + 1$[/tex].

(a) What power function does the function above resemble?
(Enter the entire power function, not just the degree of the power function.)

(b) Describe the long-run behavior of the polynomial. Enter INFINITY or -INFINITY to denote [tex]$\infty$[/tex] or [tex][tex]$-\infty$[/tex][/tex].
- [tex]$y$[/tex] goes to [tex]$\square$[/tex] as [tex]$x \rightarrow \infty$[/tex].
- [tex][tex]$y$[/tex][/tex] goes to [tex]$\square$[/tex] as [tex]$x \rightarrow -\infty$[/tex].



Answer :

Certainly! Let's solve the given problem step-by-step:

Given the function:

[tex]\[ y = 8 x^3 + \frac{6 x^4}{x^{-6}} - 7 x^5 + 1 \][/tex]

### Step (a): Simplify the function to identify the dominant term
First, we need to simplify the expression [tex]\(\frac{6 x^4}{x^{-6}}\)[/tex]:

[tex]\[ \frac{6 x^4}{x^{-6}} = 6 x^4 \cdot x^6 = 6 x^{4+6} = 6 x^{10} \][/tex]

Now, substitute this back into the original function:

[tex]\[ y = 8 x^3 + 6 x^{10} - 7 x^5 + 1 \][/tex]

To determine the power function that the polynomial resembles, we look for the term with the highest degree:

[tex]\[ 6 x^{10} \][/tex]

Therefore, the power function that this polynomial resembles is:

[tex]\[ 6 x^{10} \][/tex]

### Step (b): Describe the long-run behavior of the polynomial

To describe the long-run behavior, we need to analyze the behavior of the polynomial as [tex]\(x\)[/tex] approaches positive and negative infinity.

#### As [tex]\( x \rightarrow \infty \)[/tex]:

The highest degree term in the polynomial is [tex]\(6 x^{10}\)[/tex]. As [tex]\( x \)[/tex] becomes very large, this term will dominate all the others. Since [tex]\(6 x^{10}\)[/tex] grows without bound as [tex]\( x \rightarrow \infty \)[/tex], we have:

[tex]\[ y \rightarrow \infty \text{ as } x \rightarrow \infty \][/tex]

#### As [tex]\( x \rightarrow -\infty \)[/tex]:

Similarly, when [tex]\(x\)[/tex] becomes very large in the negative direction, the term [tex]\(6 x^{10}\)[/tex] also dominates all the others. Notably, since [tex]\(10\)[/tex] is an even power, [tex]\( x^{10} \)[/tex] will be positive even when [tex]\( x \)[/tex] is negative. Thus:

[tex]\[ y \rightarrow \infty \text{ as } x \rightarrow -\infty \][/tex]

Therefore, the long-run behavior of the polynomial is:

[tex]\[ y \rightarrow \infty \text{ as } x \rightarrow \infty \][/tex]
[tex]\[ y \rightarrow \infty \text{ as } x \rightarrow -\infty \][/tex]

### Final Answers:

(a) The power function the polynomial resembles is:

[tex]\[ 6 x^{10} \][/tex]

(b) The long-run behavior is:

[tex]\[ y \rightarrow \infty \text{ as } x \rightarrow \infty \][/tex]
[tex]\[ y \rightarrow \infty \text{ as } x \rightarrow -\infty \][/tex]