Factor the following polynomial completely.

[tex]\[x^4 y + 8x^3 y - 6x^2 y^2 - 48x y^2\][/tex]

A. [tex]\[x y (x^2 - 6y)(x + 8)\][/tex]

B. [tex]\[x y (x^2 + 8)(x - 6y)\][/tex]

C. [tex]\[x y (x^2 + 6y)(x - 8)\][/tex]

D. [tex]\[x y (x^2 - 6)(x + 8y)\][/tex]



Answer :

To factor the polynomial [tex]\(x^4 y + 8 x^3 y - 6 x^2 y^2 - 48 x y^2\)[/tex] completely, follow these steps:

1. Identify the common factors in all terms:

We start by looking for any common factors among the terms of the polynomial. Each term has both an [tex]\(x\)[/tex] and a [tex]\(y\)[/tex] factor. The greatest common factor (GCF) of all the terms is [tex]\(x y\)[/tex].

2. Factor out the greatest common factor (GCF):

[tex]\[ x^4 y + 8 x^3 y - 6 x^2 y^2 - 48 x y^2 = x y (x^3 + 8 x^2 - 6 x y - 48 y) \][/tex]

3. Look at the remaining polynomial inside the parentheses and factor further:

We now focus on factoring the cubic polynomial [tex]\(x^3 + 8 x^2 - 6 x y - 48 y\)[/tex]. We notice that this polynomial can be rearranged for better clarity or factored by grouping.

4. Rewriting and factoring by grouping:

Group terms to facilitate factoring:
[tex]\[ x^3 + 8 x^2 - 6 x y - 48 y = (x^3 + 8 x^2) + (-6 x y - 48 y) \][/tex]

Factor each group:
[tex]\[ x^2 (x + 8) - 6 y (x + 8) \][/tex]

Notice that [tex]\((x + 8)\)[/tex] is a common factor:
[tex]\[ (x^2 - 6 y)(x + 8) \][/tex]

5. Combine all the factors:

Incorporate the previously factored [tex]\(xy\)[/tex]:
[tex]\[ x y (x^2 - 6 y) (x + 8) \][/tex]

So, the complete factored form of the given polynomial [tex]\( x^4 y + 8 x^3 y - 6 x^2 y^2 - 48 x y^2 \)[/tex] is:

[tex]\[ x y (x + 8) (x^2 - 6 y) \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{x y (x + 8) (x^2 - 6 y)} \][/tex]