Drag the tiles to the correct boxes to complete the pairs.

Match the one-to-one functions with their inverse functions.

[tex]\[
\begin{array}{c}
f(x)=\frac{2 x}{3}-17 \\
f(x)=x-10 \\
f(x)=\sqrt[3]{2 x} \\
f(x)=\frac{x}{5} \\
\end{array}
\][/tex]

Inverse Function

[tex]\[
\begin{array}{c}
f^{-1}(x)=5x \\
f^{-1}(x)=\frac{x^3}{2} \\
f^{-1}(x)=x+10 \\
f^{-1}(x)=\frac{3(x+17)}{2} \\
\end{array}
\][/tex]

Function

[tex]\[
\begin{array}{c}
\square \\
\square \\
\square \\
\square \\
\end{array}
\][/tex]

Inverse Function

[tex]\[
\begin{array}{c}
\longrightarrow \\
\longrightarrow \\
\longrightarrow \\
\longrightarrow \\
\end{array}
\][/tex]



Answer :

To solve this, we need to pair each given function [tex]\( f(x) \)[/tex] with its corresponding inverse function [tex]\( f^{-1}(x) \)[/tex]. Let's go through each function carefully:

1. Function: [tex]\( f(x)=\frac{2x}{3} - 17 \)[/tex]
- To find the inverse, let's solve for [tex]\( x \)[/tex]:
[tex]\[ y = \frac{2x}{3} - 17 \][/tex]
[tex]\[ y + 17 = \frac{2x}{3} \][/tex]
[tex]\[ 3(y + 17) = 2x \][/tex]
[tex]\[ x = \frac{3(y + 17)}{2} \][/tex]
Thus, the inverse function is [tex]\( f^{-1}(x) = \frac{3(x + 17)}{2} \)[/tex].

2. Function: [tex]\( f(x)=x - 10 \)[/tex]
- To find the inverse, let's solve for [tex]\( x \)[/tex]:
[tex]\[ y = x - 10 \][/tex]
[tex]\[ y + 10 = x \][/tex]
Thus, the inverse function is [tex]\( f^{-1}(x) = x + 10 \)[/tex].

3. Function: [tex]\( f(x)=\sqrt[3]{2x} \)[/tex]
- To find the inverse, let's solve for [tex]\( x \)[/tex]:
[tex]\[ y = \sqrt[3]{2x} \][/tex]
[tex]\[ y^3 = 2x \][/tex]
[tex]\[ x = \frac{y^3}{2} \][/tex]
Thus, the inverse function is [tex]\( f^{-1}(x) = \frac{x^3}{2} \)[/tex].

4. Function: [tex]\( f(x)=\frac{x}{5} \)[/tex]
- To find the inverse, let's solve for [tex]\( x \)[/tex]:
[tex]\[ y = \frac{x}{5} \][/tex]
[tex]\[ y \cdot 5 = x \][/tex]
Thus, the inverse function is [tex]\( f^{-1}(x) = 5x \)[/tex].

Now let's match each function with its inverse function using the detailed steps:

- [tex]\( f(x) = \frac{2x}{3} - 17 \)[/tex] corresponds to [tex]\( f^{-1}(x) = \frac{3(x + 17)}{2} \)[/tex]
- [tex]\( f(x) = x - 10 \)[/tex] corresponds to [tex]\( f^{-1}(x) = x + 10 \)[/tex]
- [tex]\( f(x) = \sqrt[3]{2x} \)[/tex] corresponds to [tex]\( f^{-1}(x) = \frac{x^3}{2} \)[/tex]
- [tex]\( f(x) = \frac{x}{5} \)[/tex] corresponds to [tex]\( f^{-1}(x) = 5x \)[/tex]

Therefore:

Function [tex]\( \quad \quad \longrightarrow \)[/tex] Inverse Function

[tex]\( f(x)=\frac{2x}{3} - 17 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( f^{-1}(x)=\frac{3(x+17)}{2} \)[/tex]

[tex]\( f(x)=x - 10 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( f^{-1}(x)=x + 10 \)[/tex]

[tex]\( f(x)=\sqrt[3]{2x} \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( f^{-1}(x)=\frac{x^3}{2} \)[/tex]

[tex]\( f(x)=\frac{x}{5} \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( f^{-1}(x)=5x \)[/tex]