Answer :
To evaluate the expression for [tex]\( k = -1 \)[/tex] and [tex]\( m = -7 \)[/tex], follow these steps:
1. Identify the values: We are given [tex]\( k = -1 \)[/tex] and [tex]\( m = -7 \)[/tex].
2. Set up the expression: Substitute the given values for [tex]\( k \)[/tex] and [tex]\( m \)[/tex] into the expression [tex]\( k \cdot m \)[/tex] which reads as [tex]\( k \times m \)[/tex].
[tex]\[ k \cdot m = (-1) \times (-7) \][/tex]
3. Perform the multiplication: Multiply the two numbers together. When you multiply two negative numbers, the result is positive.
[tex]\[ (-1) \times (-7) = 7 \][/tex]
4. Write the result: The final evaluated expression is
[tex]\[ k \cdot m = 7 \][/tex]
Therefore, the expression [tex]\( k \cdot m \)[/tex] evaluates to [tex]\( 7 \)[/tex] when [tex]\( k = -1 \)[/tex] and [tex]\( m = -7 \)[/tex].
1. Identify the values: We are given [tex]\( k = -1 \)[/tex] and [tex]\( m = -7 \)[/tex].
2. Set up the expression: Substitute the given values for [tex]\( k \)[/tex] and [tex]\( m \)[/tex] into the expression [tex]\( k \cdot m \)[/tex] which reads as [tex]\( k \times m \)[/tex].
[tex]\[ k \cdot m = (-1) \times (-7) \][/tex]
3. Perform the multiplication: Multiply the two numbers together. When you multiply two negative numbers, the result is positive.
[tex]\[ (-1) \times (-7) = 7 \][/tex]
4. Write the result: The final evaluated expression is
[tex]\[ k \cdot m = 7 \][/tex]
Therefore, the expression [tex]\( k \cdot m \)[/tex] evaluates to [tex]\( 7 \)[/tex] when [tex]\( k = -1 \)[/tex] and [tex]\( m = -7 \)[/tex].
Answer:
7
Step-by-step explanation:
To evaluate the expression 'k⋅m' for the given values of k = -1 and m = -7, we simply perform the multiplication operation.
⇒ k · m = (-1) · (-7)
Multiplying two negative numbers results in a positive number:
∴ (-1) · (-7) = 7