Which equation represents a circle that contains the point [tex]$(-2, 8)$[/tex] and has a center at [tex]$(4, 0)$[/tex]?

Distance formula: [tex]\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

A. [tex](x - 4)^2 + y^2 = 100[/tex]
B. [tex](x - 4)^2 + y^2 = 10[/tex]
C. [tex]x^2 + (y - 4)^2 = 10[/tex]
D. [tex]x^2 + (y - 4)^2 = 100[/tex]



Answer :

To determine which equation represents a circle that contains the point [tex]\((-2,8)\)[/tex] and has a center at [tex]\((4,0)\)[/tex], we first need to calculate the radius of the circle.

The distance formula,
[tex]\[ \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}, \][/tex]
can be used to find the radius of the circle.

1. Identify the coordinates:
- Center of the circle, [tex]\((x_1, y_1) = (4, 0)\)[/tex]
- Given point on the circle, [tex]\((x_2, y_2) = (-2, 8)\)[/tex]

2. Substitute the values into the distance formula:
[tex]\[ \text{radius} = \sqrt{((-2)-4)^2 + (8-0)^2} \][/tex]

3. Simplify the expression inside the square root:
[tex]\[ (-2-4)^2 = (-6)^2 = 36 \][/tex]
[tex]\[ (8-0)^2 = 8^2 = 64 \][/tex]

4. Sum these results and take the square root:
[tex]\[ \text{radius} = \sqrt{36 + 64} = \sqrt{100} = 10 \][/tex]

So, the radius of the circle is 10. The equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is given by:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

In this problem:
- The center [tex]\((h, k) = (4, 0)\)[/tex]
- The radius [tex]\(r = 10\)[/tex]

Plugging these values into the equation of the circle:
[tex]\[ (x - 4)^2 + (y - 0)^2 = 10^2 \][/tex]

Simplifying,
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]

Therefore, the correct equation representing the circle that contains the point [tex]\((-2, 8)\)[/tex] and has a center at [tex]\((4, 0)\)[/tex] is:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]